

Welcome to Murano Documentation

Murano is an open source OpenStack project that combines an application
catalog with versatile tooling to simplify and accelerate packaging and
deployment. It can be used with almost any application and service in
OpenStack.

Murano project consists of several source code repositories:

	murano [https://git.openstack.org/cgit/openstack/murano/] – the main repository. It contains code for Murano API server,
Murano engine and MuranoPL.

	murano-agent [https://git.openstack.org/cgit/openstack/murano-agent/] – the agent that runs on guest VMs and executes the
deployment plan.

	murano-dashboard [https://git.openstack.org/cgit/openstack/murano-dashboard/] – Murano UI implemented as a plugin for the OpenStack
Dashboard.

	python-muranoclient [https://git.openstack.org/cgit/openstack/python-muranoclient/] – Client library and CLI client for Murano.

Note

Administrator Documentation, Contributor Documentation, and Appendix
are under development at the moment.

Introduction to Murano

	Overview

Using Murano

Learn how to use the Application Catalog directly from the Dashboard and
through the command-line interface (CLI), manage applications and environments.
The screenshots provided in this guide are of the Liberty release.

	QuickStart

	User Guide

Administrator Documentation

Learn how to manage images, categories, and repositories using the Murano
client.

	Deploying Murano

Application Developer Documentation

Learn how to compose an application package and get it ready for uploading to
Murano.

	Application Developer Guide

	FAQ

Contributor Documentation

Learn how to contribute to the project.

	Contributor Guide

Other Documentation

	Appendix

	Miscellaneous

Overview

	Key features

	Target users

	Architecture

	Use cases

Key features

Murano has a number of features designed to
interact with the application catalog, for instance
managing what’s in the catalog, and determining
how apps in the catalog are deployed.

Application catalog

	Easy browsing:
	Icons display applications for point-and-click
and drag-and-drop selection and deployment.

	Each application provides configuration information
required for deploying it to a cloud.

	An application topology of your environment is available
in a separate tab, and shows the number of instances
spawned by each application.

	The presence of the Quick Deploy button
on the applications page saves the time.

	Quick filtering by:
	Tags and words included in application name and description.

	Recent activity.

	Predefined category.

	Dependency tracking:
	Automatic detection of dependent applications that minimizes
the possibility of an application deployment with incorrect
configuration.

	No underlying IaaS configuration knowledge is required.

Application catalog management

	Easy application uploading using UI or CLI from:
	Local zip file.

	URL.

	Package name, using an application repository.

	Managing applications include:
	Application organization in categories or transfer between them.

	Application name, description and tags update.

	Predefined application categories list setting.

	Deployment tracking includes the availability of:
	Logs for deployments via UI.

	Deployment modification history to track the recent changes.

Application lifecycle management

	Simplified configuration and integration:
	It is up to an application developer to decide what their application
will be able to do.

	Dependencies between applications are easily configured.

	New applications can be connected with already existing ones.

	Well specified application actions are available.

	HA-mode and auto-scaling:
	Application authors can set up any available monitoring system to track
application events and call corresponding actions, such as
failover, starting additional instances, and others.

	Isolation:
	Applications in the same environments can easily interact with
each other, though applications between different projects (tenants) are isolated.

Target users

Cloud end users want to simply use applications as
opposed to installing and managing them. Cloud administrators,
in turn, would like to offer a well tested set of on demand
self-service applications to dramatically reduce their support burden.

Murano solves the problems of both constituents.
It enables cloud administrators to publish cloud-ready
applications in an online catalog. Cloud end users can use
the catalog to deploy these on demand applications, reliably
and consistently, with a button click.

Cloud administrators

For cloud administrators Murano provides UI and
API to easily compose, deploy, run applications, and manage
their lifecycle.

Designed to be operating system independent, it can handle apps on all
manner of the environments in the cloud, either Windows
or Linux/Unix-based operating systems.

It can be used to pre-configure and deploy anything that can
run in the cloud,
from low-level networking services to end-user applications.
By automating these ongoing cloud application management
activities, Murano speeds up the deployment, even for complex
distributed applications, without sacrificing simplicity
of use.

Cloud end users

Murano catalog lets cloud end users choose
from the available applications and services, and compose
reliable distributed environments with an intuitive UI.
Even users unfamiliar with cloud environments can easily
deploy cloud-aware applications.

Murano masks cloud-infrastructure specifics from end
users, letting them reliably compose and deploy
applications in the cloud for the widest range of
workloads and use cases without touching IaaS internals.

Architecture

Murano is composed of the following major components:

	murano command-line client

	murano-dashboard

	murano-api

	murano-engine

	murano-agent

They interact with each other as illustrated in the following diagram:

[image: Murano architecture]
All remote operations on users’ servers, such as software installation
and configuration, are carried out through an AMQP queue to the murano-agent.
Such communication can easily be configured on a separate instance of AMQP
to ensure that the infrastructure and servers are isolated.

Besides, Murano uses other OpenStack services to prevent the reimplementation
of the existing functionality. Murano interacts with these services using
their REST API through their python clients.

The external services used by Murano are:

	the Orchestration service (Heat) to orchestrate infrastructural
resources such as servers, volumes, and networks. Murano dynamically
creates heat templates based on application definitions.

	the Identity service (Keystone) to make murano API available
to all OpenStack users.

Use cases

IT-as-a-Service

An IT organization manages applications and controls the applications
availability to different OpenStack cloud users in a simple and timesaving
manner.

A cloud end user can easily find and deploy any available application
from the catalog.

Self-service portal

An application developer and quality assurance engineer reduces efforts
on testing an application for compatibility with other applications,
databases, platforms, and other components it depends on, by configuring
compound combinations of applications dynamically and deploying
environments that satisfy all requirements within minutes.

Glue layer use case

A cloud end user is able to link an ever growing number of technologies
to any application in an OpenStack cloud with a minimum cost due to
the powerful Murano architecture.

Currently, Murano applications have been integrated with the following
technologies: Docker, Legacy apps VMs or bare metal, apps outside of
OpenStack, and others.

The following technologies are to become available in the future:
Cloudify and TOSCA, Apache Brooklyn, and APS.

QuickStart

This is a brief walkthrough to quickly get you familiar with the basic
operations you can perform when using the Application catalog directly
from the dashboard.

For the detailed instructions on how to manage your environments and applications,
please proceed with dedicated sections.

Upload an application

To upload an application to the catalog:

	Log in to the OpenStack dashboard.

	Navigate to Applications > Manage > Packages.

	Click on the Import Package button:

[image: Packages page]

	In the Import Package dialog:

	Select URL from the Package Source drop-down list;

	Specify the URL in the Package URL field. Lets upload
the Apache HTTP Server package using
http://storage.apps.openstack.org/apps/com.example.apache.ApacheHttpServer.zip;

	Click Next to continue:

[image: Import Package dialog 1]

	View the package details in the new dialog, click Next
to continue:

[image: Import Package dialog 2]

	Select the Application Servers from the application category list,
click Create to import the application package:

[image: Import Package dialog 3]

	Now your application is available from Applications >
Catalog > Browse page.

Deploy an application

To add an application to an environment’s component list
and deploy the environment:

	Log in to the OpenStack dashboard.

	Navigate to Applications > Catalog > Browse.

	Click on the Quick Deploy button from the required application
from the list. Lets deploy Apache HTTP Server, for example:

[image: Applications page]

	Check Assign Floating IP and click Next to proceed:

[image: Configure Application dialog 1]

	Select the Instance Image from the drop-down list and click
Create:

[image: Configure Application dialog 2]

	Now the Apache HTTP Server application is successfully added to the newly
created quick-env-4 environment.
Click the Deploy This Environment button
to start the deployment:

[image: Environment "quick-env-1" page]
It may take some time for the environment to deploy. Wait until the status
is changed from Deploying to Ready.

	Navigate to Applications > Catalog > Environments to
view the details.

Delete an application

To delete an application that belongs to the environment:

	Log in to the OpenStack dashboard.

	Navigate to Applications > Catalog > Environments.

	Click on the name of the environment to view its details, which include
components, topology, and deployment history.

	In the Component List section, click on the
Delete Component button next to the application to be deleted.
Confirm the deletion.

Note

If an application that you are deleting has already been deployed,
you should redeploy it to apply the recent changes. If the environment
has not been deployed with this component, the changes are applied
immediately on receiving the confirmation.

Warning

Due to a known bug in Murano Kilo, resources allocated by a deleted
application might not be reclaimed until the deletion of an environment.
See LP1417136 [https://bugs.launchpad.net/murano/+bug/1417136]
for the details.

User Guide

	Managing environments
	Create an environment

	Edit an environment

	Review an environment

	Managing applications
	Import an application package

	Search for an application in the catalog

	Delete an application package

	Add an application to environment

	Deploy an environment

	Delete an application

	Log in to murano-spawned instance

	Using CLI
	Install and use the murano client

	Manage environments

	Manage packages

	Manage categories

	Manage environment templates

	Deploying environments using CLI
	Create an environment

	Create a configuration session

	Add applications to an environment

	Verify your object model

	Deploy your environment

	Support for OpenStack regions
	Deploy an app in the current region

	Associate environments with regions

Managing environments

An environment is a set of logically connected applications that are grouped
together for an easy management. By default, each environment has a single
network for all its applications, and the deployment of the environment is
defined in a single heat stack. Applications in different environments are
always independent from one another.

An environment is a single unit of deployment. This means that you deploy not
an application but an environment that contains one or multiple applications.

Using OpenStack dashboard you can easily perform such actions with an
environment as creating, editing, reviewing, deploying, and others.

Create an environment

To create an environment, perform the following steps:

	In OpenStack dashboard, navigate to Applications > Catalog > Environments.

	On the Environments page, click the Add New button.

	In the Environment Name field, enter the name for the new
environment.

	From the Environment Default Network drop-down list, choose a
specific network, if necessary, or leave the default Create New
option to generate a new network.

[image: Create an environment: Environment Default Network]

	Click the rightmost Create button. You will be redirected to
the page with the environment components.

Alternatively, you can create an environment automatically using the
Quick Deploy button below any application in the Application
Catalog. For more information, see: Quick deploy.

Edit an environment

You can edit the name of an environment. For this, perform the following steps:

	In OpenStack dashboard, navigate to Applications > Catalog > Environments.

	Position your mouse pointer over the environment name and click the
appeared pencil icon.

	Edit the name of the environment.

	Click the tick icon to apply the change.

Review an environment

This section provides a general overview of an environment, its structure,
possible statuses, and actions. An environment groups applications together.
An application that is added to an environment is called a component.

To see an environment status, navigate to Applications > Catalog > Environments.
Environments may have one of the following statuses:

	Ready to configure. When the environment is new and contains no
components.

	Ready to deploy. When the environment contains a component or multiple
components and is ready for deployment.

	Ready. When the environment has been successfully deployed.

	Deploying. When the deploying is in progress.

	Deploy FAILURE. When the deployment finished with errors.

	Deleting. When deleting of an environment is in progress.

	Delete FAILURE. You can abandon the environment in this case.

Currently, the component status corresponds to the environment status.

To review an environment and its components, or reconfigure the environment,
click the name of an environment or simply click the rightmost
Manage Components button.

	On the Components tab you can:

	Add or delete a component from an environment

	Send an environment to deploy

	Track a component status

	Call murano actions of a particular application in a deployed environment:

[image: ../../_images/murano_actions.png]

For more information on murano actions, see:
Murano actions.

	On the Topology, Deployment History, and
Latest Deployment Log tabs of the environment page you can view
the following:

	The application topology of an environment. For more information, see:
Application topology.

	The log of a particular deployment. For more information, see:
Deployment history.

	The information on the latest deployment of an environment. For more
information, see: Latest deployment log.

Managing applications

In murano, each application, as well as the form of application data entry,
is defined by its package. The murano dashboard allows you to import and
manage packages as well as search, filter, and add applications from catalog
to environments.

This section provides detailed instructions on how to import application
packages into murano and then add applications to an environment and deploy
it. This section also shows you how to find component details, application
topology, and deployment logs.

Import an application package

There are several ways of importing an application package into
murano:

	from a zip file

	from murano applications repository

	from bundles of applications

From a zip file

Perform the following steps to import an application package from a
.zip file:

	In OpenStack dashboard, navigate to
Applications > Manage > Packages.

	Click the Import Package button on the top right of the
page.

[image: Packages page: Import Package 1]

	From the Package source drop-down list
choose File, then click Browse to select a
.zip file you want to import, and then click Next.

[image: Import Package dialog: zip file]

	At this step, the package is already uploaded. Choose a category
from the Application Category menu. You can select
multiple categories while holding down the Ctrl key. If
necessary, verify and update the information about the package,
then click the Create button.

[image: Import Package dialog: Description]

Note

Though specifying a category is optional, we recommend that you
specify at least one. It helps to filter applications in the
catalog.

Green messages appear at the top right corner when the application
is successfully uploaded. In case of a failure, you will see a red
message with the problem description. For more information, please
refer to the logs.

From a repository

Perform the following steps to import an application package from
murano applications repository:

Note

To import an application package from a repository, you need to
know the full name of the package. For the packages names, go to
http://apps.openstack.org/#tab=murano-apps and click on the desired
package to see its full name.

	In OpenStack dashboard, navigate to
Applications > Manage > Packages.

	Click the Import Package button on the top right of the
page.

[image: Packages page: Import Package 2]

	From the Package source drop-down list,
choose Repository, enter the package name, and then
click Next. Note that you may also specify the version
of the package.

[image: Import Package dialog: Repository]

	At this step, the package is already uploaded. Choose a category
from the Application Category menu. You can select
multiple categories while holding down the Ctrl key. If
necessary, verify and update the information about the package,
then click the Create button.

[image: Import Package dialog: Description]

From a bundle of applications

Perform the following steps to import a bundle of applications:

Note

To import an application bundle from a repository, you need
to know the full name of the package bundle. To find it out, go
to http://apps.openstack.org/#tab=murano-apps and click on the
desired bundle to see its full name.

	In OpenStack dashboard, navigate to
Applications > Manage > Packages.

	Click the Import Bundle button on the top right of the
page.

[image: Packages page: Import Bundle]

	From the Package Bundle Source drop-down list, choose
Repository, enter the bundle name, and then
click Create.

[image: Import Bundle dialog]

Search for an application in the catalog

When you have imported many applications and want to quickly find
a required one, you can filter them by category, tags and words that
the application name or description contains:

In OpenStack dashboard, navigate to Applications > Catalog
> Browse.

The page is divided into two sections:

	Recent Activity shows the most recently imported or deployed
applications.

	The bottom section contains all the available applications sorted
alphabetically.

To view all the applications of a specific category, select it from
the App Category drop-down list:

[image: Applications page: App Category]

To filter applications by tags or words from the application name or
description, use the rightmost filter:

[image: Applications page: Filter]

Note

Tags can be specified during the import of an application package.

For example, there is an application that has the word
document-oriented in description. Let’s find it with the filter.
The following screenshot shows you the result.

[image: Applications page: example]

Delete an application package

To delete an application package from the catalog, please perform
the following steps:

	In OpenStack dashboard, navigate to Applications > Manage > Packages.

	Select a package or multiple packages you want to delete and click
Delete Packages.

[image: Packages page: Select packages]

	Confirm the deletion.

Add an application to environment

After uploading an application, the second step is to add it to an
environment. You can do this:

	from environment details page

	from applications catalog page

From environment details page

	In OpenStack dashboard, navigate to
Applications > Catalog > Environments.

	Find the environment you want to manage and click
Manage Components, or simply click on the environment’s
name.

	Procced with the Drop Components here field
or the Add Component button.

Use of Drop Components here field

	On the Environment Components page, drag and drop a desired
application into the Drop Components here field under
the Application Components section.

[image: Environment Components page: Drag and drop a component]

	Configure the application. Note that the settings may vary from app to app
and are predefined by the application author. When done, click
Next, then click Create.

Now the application appears in the Component List section on
the Environment Components page.

Use of Add Component button

	On the Environment Components page, click Add Component.

[image: Environment Components page: Add component]

	Find the application you want to add and click Add to Env.

[image: Applications page: Add to Env]

	Configure the application and click Next. Note that the
settings may vary from app to app and are predefined by the
application author.

	To add more applications, check Continue application adding,
then click Create and repeat the steps above. Otherwise, just
click Create.

[image: Configure Application dialog: Add more applications]
Now the application appears in the Component List section
on the Environment Components page.

From applications catalog page

	In OpenStack dashboard, navigate to
Applications > Catalog > Browse.

	On the Applications catalog page, use one of the following methods:
	Quick deploy. Automatically creates an
environment, adds the selected application, and redirects you
to the page with the environment components.

	Add to Env. Adds an application to an already
existing environment.

Quick Deploy button

	Find the application you want to add and click
Quick Deploy. Let’s add Apache Tomcat, for example.

[image: Applications page: Quick Deploy]

	Configure the application. Note that the settings may vary from app to
app and are predefined by the application author. When done, click
Next, then click Create. In the example
below we assign a floating IP address.

[image: Configure Application dialog]

Now the Apache Tomcat application is successfully added to an
automatically created quick-env-1 environment.

[image: Environment Components page: Select packages]

Add to Env button

	From the Environment drop-down list, select the
required environment.

[image: Applications page: Select environment]

	Find the application you want to add and click
Add to Env. Let’s add Apache Tomcat, for example.

[image: Applications page: Add to Env]

	Configure the application and click Next. Note that the
settings may vary from app to app and are predefined by the
application author. In the example below we assign a floating
IP address.

[image: Configure Application dialog]

	To add more applications, check Add more applications
to the environment, then click Create and repeat the
steps above. Otherwise, just click Create.

[image: Configure Application dialog: Add more applications]

Deploy an environment

Make sure to add necessary applications to your environment, then deploy it
following one of the options below:

	Deploy an environment from the Environments page

	In OpenStack dashboard, navigate to Applications >
Catalog > Environments.

	Select Deploy Environment from the Actions drop-down list
next to the environment you want to deploy.

[image: Environments page]
It may take some time for the environment to deploy. Wait for the status
to change from Deploying to Ready. You cannot add applications to
your environment during deployment.

	Deploy an environment from the Environment Components page

	In OpenStack dashboard, navigate to Applications >
Catalog > Environments.

	Click the name of the environment you want to deploy.

[image: Environments page]

	On the Environment Components page, click Deploy This Environment
to start the deployment.

[image: Environment Components page]
It may take some time for the environment to deploy. You cannot add
applications to your environment during deployment. Wait for the status
to change from Deploying to Ready. You can check the status either on
the Environments page or on the Environment Components page.

Browse component details

You can browse component details to find the following information about
a component:

	Name

	ID

	Type

	Instance name (available only after deployment)

	Heat orchestration stack name (available only after deployment)

To browse a component details, perform the following steps:

	In OpenStack dashboard, navigate to
Applications > Catalog > Environments.

	Click the name of the required environment.

	In the Component List section, click the name of the required
component.

[image: Components details]
The links redirect to corresponding horizon pages with the detailed
information on instance and heat stack.

Application topology

Once you add an application to your environment, the application topology of
this environment becomes available in a separate tab. The topology represents
an elastic diagram showing the relationship between a component and the
infrastructure it runs on. To view the topology:

	In OpenStack dashboard, navigate to
Applications > Catalog > Environments.

	Click the name of the necessary environment.

	Click the Topology tab.

The topology is helpful to visually display complex components, for example
Kubernetes. The red icons reflect errors during the deployment while the green
ones show success.

[image: Topology tab: Deployment failed]
The following elements of the topology are virtual machine and an instance of
dependent MuranoPL class:

	Element
	Meaning

	[image: ../../_images/topology_element_1.png]

	Virtual machine

	[image: ../../_images/topology_element_2.png]

	Instance

Position your mouse pointer over an element to see its name, ID, and other
details.

[image: Topology tab: Deployment successful]

Deployment logs

To get detailed information on a deployment, use:

	Deployment history, which contains logs and deployment
structure of an environment.

	Latest deployment log, which contains information on the
latest deployment of an environment.

	Component logs, which contain logs on a particular
component in an environment.

Deployment history

To see the log of a particular deployment, proceed with the steps
below:

	In OpenStack dashboard, navigate to Applications > Catalog >
Environments.

	Click the name of the required environment.

	Click the Deployment History tab.

	Find the required deployment and click Show Details.

	Click the Logs tab to see the logs.

[image: Deployment Logs page]

Latest deployment log

To see the latest deployment log, proceed with the steps below:

	In OpenStack dashboard, navigate to Applications > Catalog >
Environments.

	Click the name of the required environment.

	Click the Latest Deployment Log tab to see the logs.

Component logs

To see the logs of a particular component of an environment, proceed with the
steps below:

	In OpenStack dashboard, navigate to Applications > Catalog >
Environments.

	Click the name of the required environment.

	In the Component List section, click the required component.

	Click the Logs tab to see the component logs.

[image: Component Logs page]

Delete an application

To delete an application that belongs to the environment:

	In OpenStack dashboard, navigate to Applications >
Catalog > Environments.

	Click on the name of the environment you want to delete an
application from.

[image: Environments page]

	In the Component List section, click the
Delete Component button next to the application you
want to delete. Then confirm the deletion.

[image: Environment Components page]

Note

If the application that you are deleting has already been deployed,
you should redeploy the environment to apply the recent changes.
If the environment has not been deployed with this component,
the changes are applied immediately on receiving the confirmation.

Warning

Due to a known bug in murano as of Kilo release, the OS resources
allocated by a deleted application might not be reclaimed until
you delete the environment. See the Deallocating stack resources [https://blueprints.launchpad.net/murano/+spec/deallocating-stack-resources]
blueprint for details.

Log in to murano-spawned instance

After the application is successfully deployed, you may need to log in to the
virtual machine with the installed application.

All cloud images, including images imported from the
OpenStack Application Catalog [http://apps.openstack.org/],
have password authentication turned off. Therefore, it is not possible
to log in from the dashboard console. SSH is used to reach an instance spawned
by murano.

Possible default image users are:

	ec2-user

	ubuntu or debian (depending on the operating system)

To log in to murano-spawned instance, perform the following steps:

	Prepare a key pair.

To log in through SSH, provide a key pair during the application creation.
If you do not have a key pair, click the plus sign to create one directly
from the Configure Application dialog.

[image: Application creation: key pair]

	After the deployment is completed, find out the instance IP address. For
this, see:

	Deployment logs

[image: Application logs: IP is provided]

	Detailed instance parameters

See the Instance name link on the
Component Details page.

[image: Application details: instance details link]

	To connect to the instance through SSH with the key pair, run:

$ ssh <username>@<IP> -i <key.location>

Using CLI

This section provides murano end users with information on how they can use
the Application Catalog through the command-line interface (CLI).

Using python-muranoclient, the CLI client for murano, you can easily manage
your environments, packages, categories, and deploy environments.

	Install and use the murano client

Manage environments

An environment is a set of logically connected applications that are grouped
together for an easy management. By default, each environment has a single
network for all its applications, and the deployment of the environment is
defined in a single heat stack. Applications in different environments are
always independent from one another.

An environment is a single unit of deployment. This means that you deploy not
an application but an environment that contains one or multiple applications.

Using CLI, you can easily perform such actions with an environment as
creating, renaming, editing, viewing, and others.

Create an environment

To create an environment, use the following command specifying the
environment name:

$ murano environment-create <NAME>

Rename an environment

To rename an environment, use the following command specifying the old name of
the environment or its ID and the new name:

$ murano environment-rename <OLD_NAME_OR_ID> <NEW_NAME>

Delete an environment

To delete an environment, use the following command specifying the
environment name or ID:

$ murano environment-delete <NAME_OR_ID>

List deployments for an environment

To get a list of deployments for a particular environment, use the following
command specifying the environment name or ID:

$ murano deployment-list <NAME_OR_ID>

List the environments

To get a list of all existing environments, run:

$ murano environment-list

Show environment object model

To get a complete object model of the environment, run:

$ murano environment-model-show <ID>

To get some part of the environment model, run:

$ murano environment-model-show <ID> --path <PATH>

For example:

$ murano environment-model-show 534bcf2f2fc244f2b94ad55ff0f24a42 –path /defaultNetworks/environment

To get a draft of an object model of environment in pending state, also
specify id of the session:

$ murano environment-model-show <ID> --path <PATH> --session-id <SESSION_ID>

Edit environment object model

To edit an object model of the environment, run:

$ murano environment-model-edit <ID> <FILE> --session-id <SESSION_ID>

<FILE> is the path to the file with the JSON-patch to modify the object model.

JSON-patch is a valid JSON that contains a list of changes to be applied to
the current object. Each change contains a dictionary with three keys: op,
path and value. op (operation) can be one of the three values:
add, replace or remove`.

Allowed operations for paths:

	“” (model root): no operations

	“defaultNetworks”: “replace”

	“defaultNetworks/environment”: “replace”

	“defaultNetworks/environment/?/id”: no operations

	“defaultNetworks/flat”: “replace”

	“name”: “replace”

	“region”: “replace”

	”?/type”: “replace”

	”?/id”: no operations

For other paths any operation (add, replace or remove) is allowed.

Example of JSON-patch:

[{
 "op": "replace",
 "path": "/defaultNetworks/flat",
 "value": true
}]

The patch above changes the value of the flat property of the
environment’s defaultNetworks property to true.

Manage packages

This section describes how to manage packages using the command line
interface. You can easily:

	import a package or bundles of packages

	list the existing packages

	display details for a package

	download a package

	delete a package

	create a package

Import a package

With the package-import command you can import packages
into murano in several different ways:

	from a local .zip file

	from murano app repository

	from an http URL

From a local .zip file

To import a package from a local .zip file, run:

$ murano package-import /path/to/PACKAGE.zip

where PACKAGE is the name of the package stored on your
computer.

For example:

$ murano package-import /home/downloads/mysql.zip
Importing package com.example.databases.MySql
+---------------------------------+------+----------------------------+--------------+---------+
| ID | Name | FQN | Author |Is Public|
+---------------------------------+------+----------------------------+--------------+---------+
| 83e4038885c248e3a758f8217ff8241f| MySQL| com.example.databases.MySql| Mirantis, Inc| |
+---------------------------------+------+----------------------------+--------------+---------+

To make the package available for users from other projects (tenants), use the
--is-public parameter. For example:

$ murano package-import --is-public mysql.zip

Note

The package-import command supports multiple positional
arguments. This means that you can import several packages at once.

From murano app repository

To import a package from murano applications repository, specify
the URL of the repository with --murano-repo-url and a fully
qualified package name. For package names, go to murano applications repository,
and click on the desired package to see its full name.

Note

You can also specify the URL of the repository with the
corresponding MURANO_REPO_URL environment variable.

The following example shows how to import the MySQL package from the
murano applications repository:

$ murano --murano-repo-url=http://storage.apps.openstack.org \
package-import com.example.databases.MySql

This command supports an optional --package-version parameter that instructs
murano client to download a specified package version.

The package-import command inspects package requirements
specified in the package’s manifest under the Require section, and
attempts to import them from murano repository. The package-import
command also inspects any image prerequisites mentioned in the
images.lst file in the package. If there are any image
requirements, client would inspect images already present in the image
database. Unless image with the specific name is present, client would
attempt to download it.

If any of the packages being installed is already registered in murano,
the client asks you what to do with it. You can specify the default action
with --exists-action, passing s - for skip, u - for update, and
a - for abort.

From an URL

To import an application package from an URL, use the following command:

$ murano package-import http://example.com/path/to/PACKAGE.zip

The example below shows how to import a MySQL package from the
murano applications repository using the package URL:

$ murano package-import http://storage.apps.openstack.org/apps/com.example.databases.MySql.zip
Inspecting required images
Importing package com.example.databases.MySql
+----------------------------------+-------+----------------------------+--------------+--------+----------+------------+
| ID | Name | FQN | Author | Active | Is Public| Type |
+----------------------------------+-------+----------------------------+--------------+--------+----------+------------+
| 1aa62196595f411399e4e48cc2f6a512 | MySQL | com.example.databases.MySql| Mirantis, Inc| True | | Application|
+----------------------------------+-------+----------------------------+--------------+--------+----------+------------+

Import bundles of packages

With the bundle-import command you can install packages in
several different ways:

	from a local bundle

	from an URL

	from murano app repository

When importing bundles, you can set their publicity with --is-public.

From a local bundle

To import a bundle from the a local file system, use the following
command:

$ murano bundle-import /path/to/bundle/BUNDLE_NAME

This command imports all the requirements of packages and
images.

When importing a bundle from a file system, the murano client
searches for packages in a directory relative to the bundle location
before attempting to download a package from repository. This facilitates
cases with no Internet access.

The following example shows the import of a monitoring bundle:

$ murano bundle-import /home/downloads/monitoring.bundle
Inspecting required images
Importing package com.example.ZabbixServer
Importing package com.example.ZabbixAgent
+----------------------------------+---------------+--------------------------+---------------+--------+----------+------------+
| ID | Name | FQN | Author | Active | Is Public| Type |
+----------------------------------+---------------+--------------------------+---------------+--------+----------+------------+
| fb0b35359e384fe18158ff3ed8f969b5 | Zabbix Agent | com.example.ZabbixAgent | Mirantis, Inc | True | | Application|
| 00a77e302a65420c8080dc97cc0f2723 | Zabbix Server | com.example.ZabbixServer | Mirantis, Inc | True | | Application|
+----------------------------------+---------------+--------------------------+---------------+--------+----------+------------+

Note

The bundle-import command supports multiple positional
arguments. This means that you can import several bundles at once.

From an URL

To import a bundle from an URL, use the following command:

$ murano bundle-import http://example.com/path/to/bundle/BUNDLE_NAME

Where http://example.com/path/to/bundle/BUNDLE_NAME is any external http/https
URL to load the bundle from.

For example:

$ murano bundle-import http://storage.apps.openstack.org/bundles/monitoring.bundle

From murano applications repository

To import a bundle from murano applications repository, use the
following command, where bundle_name stands for the bundle name:

$ murano bundle-import BUNDLE_NAME

For example:

$ murano bundle-import monitoring

Note

For bundle names, go to murano applications repository, click the
Format tab to show bundles first, and then click on
the desired bundle to see its name.

List packages

To list all the existing packages you have, use the
package-list command. The result will show you the package
ID, name, author and if it is public or not. For example:

$ murano package-list
+----------------------------------+--------------------+-------------------------------------+---------------+--------+----------+------------+
| ID | Name | FQN | Author | Active | Is Public| Type |
+----------------------------------+--------------------+-------------------------------------+---------------+--------+----------+------------+
daa46cfd78c74c11bcbe66d3239e546e	Apache HTTP Server	com.example.apache.ApacheHttpServer	Mirantis, Inc	True		Application
5252c9897e864c9f940e08500056f155	Cloud Foundry	com.example.paas.CloudFoundry	Mirantis, Inc	True		Application
1aa62196595f411399e4e48cc2f6a512	MySQL	com.example.databases.MySql	Mirantis, Inc	True		Application
11d73cfdc6d7447a910984d95090463b	SQL Library	com.example.databases	Mirantis, Inc	True		Application
fb0b35359e384fe18158ff3ed8f969b5	Zabbix Agent	com.example.ZabbixAgent	Mirantis, Inc	True		Application
00a77e302a65420c8080dc97cc0f2723	Zabbix Server	com.example.ZabbixServer	Mirantis, Inc	True		Application
+----------------------------------+--------------------+-------------------------------------+---------------+--------+----------+------------+

Show packages

To get full information about a package, use the package-show
command. For example:

$ murano package-show 1aa62196595f411399e4e48cc2f6a512
+----------------------+---+
| Property | Value |
+----------------------+---+
categories	
class_definitions	com.example.databases.MySql
description	MySql is a relational database management system
	(RDBMS), and ships with no GUI tools to administer
	MySQL databases or manage data contained within the
	databases.
enabled	True
fully_qualified_name	com.example.databases.MySql
id	1aa62196595f411399e4e48cc2f6a512
is_public	False
name	MySQL
owner_id	1ddb2c610d4e4c5dab5185e32554560a
tags	Database, MySql, SQL, RDBMS
type	Application
+----------------------+---+

Delete a package

To delete a package, use the following command:

$ murano package-delete PACKAGE_ID

Download a package

With the following command you can download a .zip archive
with a specified package:

$ murano package-download PACKAGE_ID > FILE.zip

You need to specify the package ID and enter the .zip file name
under which to save the package.

For example:

$ murano package-download e44a3f526dfb4e08b3c1018c9968d911 > Wordpress.zip

Create a package

With the murano client you can create application packages from package
source files or directories. The package-create command is
useful when application package files are spread across several directories.
This command has the following required parameters:

-r RESOURCES_DIRECTORY
-c CLASSES_DIRECTORY
--type TYPE
-o PACKAGE_NAME.zip
-f FULL_NAME
-n DISPLAY_NAME

Example:

$ murano package-create -c Downloads/Folder1/Classes -r Downloads/Folder2/Resources \
-n mysql -f com.example.MySQL -d Package -o MySQL.zip --type Library
Application package is available at /home/Downloads/MySQL.zip

After this, the package is ready to be imported to the application
catalog.

The package-create command is also useful for autogenerating
packages from heat templates. In this case you do not need to manually
specify so many parameters. For more information on automatic package
composition, please see Automatic package composing.

Manage categories

In murano, applications can belong to a category or multiple categories.
Administrative users can create and delete a category as well as list
available categories and view details for a particular category.

Create a category

To create a category, use the following command specifying the category name:

$ murano category-create <NAME>

List available categories

To get a list of all existing categories, run:

$ murano category-list

Show category details

To see packages that belong to a particular category, use the following
command specifying the category ID:

$ murano category-show <ID>

Delete a category

To delete a category, use the following command specifying the ID of a
category or multiple categories to delete:

$ murano category-delete <ID> [<ID> ...]

Note

Verify that no packages belong to the category to be deleted, otherwise an
error appears. For this, use the murano category-show <ID>
command.

Manage environment templates

To manage environment templates, use the following commands specifying
appropriate values:

	murano env-template-create <ENV_TEMPLATE_NAME>

	Creates an environment template.

	murano env-template-clone <ID> <NEW_ENV_TEMPLATE_NAME>

	Creates a new template, cloned from an existing template.

	murano env-template-create-env <ID> <ENV_TEMPLATE_NAME>

	Creates a new environment from template.

	murano env-template-add-app <ENV_TEMPLATE_ID> <FILE>

	Adds an application or multiple applications to the environment template.

	murano env-template-del-app <ENV_TEMPLATE_ID> <ENV_TEMPLATE_APP_ID>

	Deletes an application from the environment template.

	murano env-template-list

	Lists the environments templates.

	murano env-template-show <ID>

	Displays environment template details.

	murano env-template-update <ID> <ENV_TEMPLATE_NAME>

	Updates an environment template.

	murano env-template-delete <ID>

	Deletes an environment template.

See also

Application Catalog service command-line client [http://docs.openstack.org/cli-reference/murano.html].

Install and use the murano client

The Application Catalog project provides a command-line client,
python-muranoclient, which enables you to access the project API.
For prerequisites, see Install the prerequisite software [http://docs.openstack.org/cli-reference/common/cli_install_openstack_command_line_clients.html#install-the-prerequisite-software].

To install the latest murano CLI client, run the following command in your
terminal:

$ pip install python-muranoclient

Discover the client version number

To discover the version number for the python-muranoclient, run the following
command:

$ murano --version

To check the latest version, see Client library for Murano API [https://git.openstack.org/cgit/openstack/python-muranoclient].

Upgrade or remove the client

To upgrade or remove the python-muranoclient, use the corresponding commands.

To upgrade the client:

$ pip install --upgrade python-muranoclient

To remove the client:

$ pip uninstall python-muranoclient

Set environment variables

To use the murano client, you must set the environment variables. To do this,
download and source the OpenStack RC file. For more information, see
Download and source the OpenStack RC file [http://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html#download-and-source-the-openstack-rc-file].

Alternatively, create the PROJECT-openrc.sh file from scratch. For this,
perform the following steps:

	In a text editor, create a file named PROJECT-openrc.sh containing the
following authentication information:

export OS_USERNAME=user
export OS_PASSWORD=password
export OS_TENANT_NAME=tenant
export OS_AUTH_URL=http://auth.example.com:5000
export MURANO_URL=http://murano.example.com:8082/

	In the terminal, source the PROJECT-openrc.sh file. For example:

$. admin-openrc.sh

Once you have configured your authentication parameters, run
murano help to see a complete list of available commands and
arguments. Use murano help <sub_command> to get help on a specific
subcommand.

See also

Set environment variables using the OpenStack RC file [http://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html].

Bash completion

To get the latest bash completion script, download
murano.bash_completion [https://git.openstack.org/cgit/openstack/python-muranoclient/plain/tools/murano.bash_completion]
from the source repository and add it to your completion scripts.

If you are not aware of the completion scripts location, perform the following
steps:

	Create a new directory:

$ mkdir -p ~/.bash_completion/

	Create a file containing the bash completion script:

$ curl https://git.openstack.org/cgit/openstack/python-muranoclient/plain/tools/murano.bash_completion > ~/.bash_completion/murano.sh

	Add the following code to the ~/.profile file:

for file in $HOME/.bash_completion/*.sh; do
 if [-f "$file"]; then
 . "$file"
 fi
done

	In the current terminal, run:

$ source ~/.bash_completion/murano.sh

Deploying environments using CLI

The main tool for deploying murano environments is murano-dashboard. It is
designed to be easy-to-use and intuitive. But it is not the only tool you can
use to deploy a murano environment, murano CLI client also possesses required
functionality for the task. This is an advanced scenario, however, that
requires knowledge of internal murano workflow,
murano object model, and
murano environment lifecycle.
This scenario is suitable for deployments without
horizon or deployment automation.

Note

This is an advanced mechanism and you should use it only when you are
confident in what you are doing. Otherwise, it is recommended that you use
murano-dashboard.

Create an environment

The following command creates a new murano environment that is ready for
configuration. For convenience, this guide refers to environment ID as
$ENV_ID.

$ murano environment-create deployed_from_cli

+----------------------------------+-------------------+---------------------+---------------------+
| ID | Name | Created | Updated |
+----------------------------------+-------------------+---------------------+---------------------+
| a66e5ea35e9d4da48c2abc37b5a9753a | deployed_from_cli | 2015-10-06T13:50:45 | 2015-10-06T13:50:45 |
+----------------------------------+-------------------+---------------------+---------------------+

Create a configuration session

Murano uses configuration sessions to allow several users to edit and configure
the same environment concurrently. Most of environment-related commands
require the --session-id parameter. For convenience, this guide
refers to session ID as $SESS_ID.

To create a configuration session, use the
murano environment-session-create $ENV_ID command:

$ murano environment-session-create $ENV_ID

+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| id | 5cbe7e561ffc484ebf11aabf83f9f4c6 |
+----------+----------------------------------+

Add applications to an environment

To manipulate environments object model from CLI, use the
environment-apps-edit command:

$ murano environment-apps-edit --session-id $SESS_ID $ENV_ID object_model_patch.json

The object_model_patch.json contains the jsonpatch object. This
object is applied to the /services key of the environment in question.
Below is an example of the object_model_patch.json file content:

[
 { "op": "add", "path": "/-", "value":
 {
 "instance": {
 "availabilityZone": "nova",
 "name": "xwvupifdxq27t1",
 "image": "fa578106-b3c1-4c42-8562-4e2e2d2a0a0c",
 "keyname": "",
 "flavor": "m1.small",
 "assignFloatingIp": false,
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "===id1==="
 }
 },
 "name": "ApacheHttpServer",
 "enablePHP": true,
 "?": {
 "type": "com.example.apache.ApacheHttpServer",
 "id": "===id2==="
 }
 }
 }
]

For convenience, the murano client replaces the "===id1===", "===id2==="
(and so on) strings with UUIDs. This way you can ensure that object IDs
inside your object model are unique.
To learn more about jsonpatch, consult jsonpatch.com [http://jsonpatch.com] and RFC 6902 [http://tools.ietf.org/html/rfc6902].
The environment-apps-edit command fully supports jsonpatch.
This means that you can alter, add, or remove parts of your applications
object model.

Verify your object model

To verify whether your object model is correct, check the environment by
running the environment-show command with the
--session-id parameter:

$ murano environment-show $ENV_ID --session-id $SESS_ID --only-apps

 [
 {
 "instance": {
 "availabilityZone": "nova",
 "name": "xwvupifdxq27t1",
 "assignFloatingIp": false,
 "keyname": "",
 "flavor": "m1.small",
 "image": "fa578106-b3c1-4c42-8562-4e2e2d2a0a0c",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "fc4fe975f5454bab99bb0e309249e2d2"
 }
 },
 "?": {
 "status": "pending",
 "type": "com.example.apache.ApacheHttpServer",
 "id": "69cdf10d31e64196b4de894e7ea4f1be"
 },
 "enablePHP": true,
 "name": "ApacheHttpServer"
 }
]

Deploy your environment

To deploy a session $SESS_ID of your environment, use the
murano environment-deploy command:

$ murano environment-deploy $ENV_ID --session-id $SESS_ID

You can later use the murano environment-show command to
track the deployment status.

To view the deployed applications of a particular environment, use the
murano environment-show command with the --only-apps
parameter and specifying the environment ID:

$ murano environment-show $ENV_ID --only-apps

Support for OpenStack regions

Murano supports multi-region deployment. If OpenStack setup has several regions
it is possible to choose the region to deploy an application.

There is the new option in the murano configuration file:

	home_region - default region name used to get services
endpoints. The region where murano-api resides.

Now murano has two possible ways to deploy apps in different regions:

	Deploy an application in the current murano region.

	Associate environments with regions.

Deploy an app in the current region

Each region has a copy of murano services and its own RabbitMQ for api to
engine communication. In this case application will be deployed to the same
region that murano run in.

See also

Multi-region application

Associate environments with regions

Murano services are in one region but environments can be associated with
different regions. There are two new properties in the class
io.murano.Environment:

	regionConfigs - a dict with RabbitMQ settings for each region. The
structure of the agentRabbitMq part of the dict is identical to [rabbitmq]
section in the murano.conf file. For example:

regionConfigs:
 RegionOne:
 agentRabbitMq:
 host: 192.1.1.1
 login: admin
 password: admin

User can store such configs as YAML or JSON files. These config files must
be stored in a special folder that is configured in [engine] section of
murano.conf file under class_configs key and must be named using
%FQ class name%.json or %FQ class name%.yaml pattern.

	region - region name to deploy an app. It can be passed when creating
environment via CLI:

murano environment-create environment_name --region RegionOne

If it is not specified a value from home_region option of murano.conf
file will be used.

Deploying Murano

	Deploying murano
	System requirements

	Integrate murano with DevStack

	Install murano manually

	Configure SSL

	Prepare a lab for murano
	System prerequisites

	Test your lab host performance

	Baseline data

	Host optimizations

	Configuration
	Network configuration

	Policy configuration

	Managing packages
	Managing packages on engine side

	Managing images
	Build an image

	Manage images

	Managing categories

	Murano repository
	Use an existing repository

	Set up a custom repository

	Murano agent
	Murano-agent on a new VM

	Interaction with murano-engine

	Execution plans and execution plan templates

	Policy enforcement
	Setting up policy enforcement

	Creating policy enforcement rules

	Murano policy enforcement internals

	Using policy for the base modification of an environment

	Murano service broker for Cloud Foundry
	Service broker overview

	Configure service broker

	How to use service broker

	Known issues

	Useful links

	Using Glare as a storage for packages
	DevStack installation

	Set up Glare API entrypoint manually

	Troubleshooting
	Log location

	Issues during configuration

	Issues during deployment

Deploying murano

	System requirements
	Software prerequisites

	Hardware requirements

	Testing the performance

	Integrate murano with DevStack

	Install murano manually
	Install the API service and engine

	Register in keystone

	Install the murano dashboard

	Import murano applications

	Configure SSL
	Configure SSL for Murano API

	Configure SSL for RabbitMQ

	Configure SSL for the Dashboard

System requirements

This section provides basic information about the murano environment system
requirements. Additionally, it contains a description of the performance
test scenario, which you may use to check if your hardware fits
the requirements. To do this, run the test and compare the results with
the baseline data provided.

Software prerequisites

Before you install murano, verify your system meets the following
prerequisites.

Supported operating systems:

	Ubuntu Server 14.04 LTS

	RHEL/CentOS

	Debian

System packages for Ubuntu:

	gcc

	python-pip

	python-dev

	libxml2-dev

	libxslt-dev

	libffi-dev

	libpq-dev

	python-openssl

	mysql-client

System packages for CentOS:

	gcc

	python-pip

	python-devel

	libxml2-devel

	libxslt-devel

	libffi-devel

	postgresql-devel

	pyOpenSSL

	mysql

Hardware requirements

We recommend that your system meets the following hardware requirements:

	Criteria
	Minimal
	Recommended

	CPU
	4 core @ 2.4 GHz
	24 core @ 2.67 GHz

	RAM
	8 GB
	24 GB or more

	HDD
	2 x 500 GB (7200 rpm)
	4 x 500 GB (7200 rpm)

	RAID
	Software RAID-1 (use mdadm as
it improves the read
performance almost twice)
	Hardware RAID-10

Other possible storage configurations:

	1x SSD 500+ GB

	1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto
the HDD and mount the SSD drive to the directory where the virtual
machines images are stored)

	1x HDD (15000 rpm) 500+ GB

Testing the performance

We have measured the time required to boot 1 to 5 instances of the Windows
operating system simultaneously. You can use this data as the baseline
to check if your system is fast enough.

Note

Use sysprepped images for this test to simulate an instance first boot.

To reproduce the performance test, proceed with the following steps:

	Prepare a Windows 2012 Standard (with GUI) image in the QCOW2 format.
This example uses the ws-2012-std.qcow2 image.

	Verify that there are no KVM processes running on the host:

ps aux | grep kvm

	Make 5 copies of the Windows image file:

for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

	Create the start-vm.sh script in the directory with the .qcow2
files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm -m 1024 -drive file=ws-2012-std-$i.qcow2,if=virtio -net user -net nic,model=virtio -nographic -usbdevice tablet -vnc :$i & done

	Start ONE instance using the command below (as root) and measure time
between the instance launch and the moment when the Server Manager window
displays.

 sudo ./start-vm.sh 1

To view the instance desktop, connect with VNC viewer to your host
to VNC screen :1 (port 5901).

	Turn off the instance. You may simply kill all KVM processes by running:

sudo killall kvm

	Start FIVE instances with the command below (as root) and measure time
interval between ALL instances launch and the moment when the LAST
Server Manager window displays.

sudo ./start-vm.sh 5

To view VM’s desktops, connect with VNC viewer to your
host to VNC screens :1 thru :5 (ports 5901-5905).

	Turn off the instances. You may simply kill all KVM processes by running:

sudo killall kvm

Baseline data

The table below provides the baseline data that was received in our test
murano environment.

	
	Boot ONE instance
	Boot FIVE instances

	Avg. Time
	3m:40s
	8m

	Max. Time
	5m
	20m

	Avg. Time

	Refers to the environment with the recommended hardware configuration

	Max. Time

	Refers to the minimal hardware configuration

Host optimizations

You can improve your default KVM installation performance with the following
optimizations up to 30%:

	Change the default scheduler from CFQ to Deadline

	Use ksm

	Use vhost-net

Integrate murano with DevStack

You can install murano with DevStack. The murano/devstack [https://git.openstack.org/cgit/openstack/murano/tree/devstack] directory
in the murano repository contains the files necessary to integrate murano
with DevStack [http://docs.openstack.org/developer/devstack/].

To install the development version of an OpenStack environment
with murano, proceed with the following steps:

	Download DevStack:

git clone https://git.openstack.org/openstack-dev/devstack
cd devstack

	Edit local.conf to enable murano DevStack plug-in:

> cat local.conf
[[local|localrc]]
enable_plugin murano git://git.openstack.org/openstack/murano

	If you want to enable Murano Cloud Foundry Broker API service, add the
following line to local.conf:

enable_service murano-cfapi

	If you want to use Glare Artifact Repository as a strorage for packages,
add the following line to local.conf:

enable_service g-glare

For more information on how to use Glare Artifact Repository,
see Using Glare as a storage for packages.

	(Optional) To import murano packages when DevStack is up, define an ordered
list of FQDN packages in local.conf. Verify that you list all package
dependencies. These packages will be imported from the murano-apps
git repository by default. For example:

MURANO_APPS=com.example.apache.Tomcat,com.example.Guacamole

To configure the git repository that will be used as the source for
the imported packages, configure the MURANO_APPS_REPO and
MURANO_APPS_BRANCH variables.

	Run DevStack:

./stack.sh

Result: Murano has installed with DevStack.

Install murano manually

Before you install Murano, verify that you completed the following tasks:

	Install software prerequisites depending on the operating system you use
as described in the System prerequisites section.

	Install tox:

sudo pip install tox

	Install and configure a database.

Murano can use various database types on back end. For development
purposes, use SQLite. For production installations, consider using
MySQL database.

Warning

Murano supports PostgreSQL as well. Though, use it with caution
as it has not been thoroughly tested yet.

Before you can use MySQL database, proceed with the following:

	Install MySQL:

apt-get install mysql-server

	Create an empty database:

Replace %MURANO_DB_PASSWORD% with the actual password. For example,
‘admin’.

mysql -u root -p

mysql> CREATE DATABASE murano;
mysql> GRANT ALL PRIVILEGES ON murano.* TO 'murano'@'localhost' \
IDENTIFIED BY %MURANO_DB_PASSWORD%;
mysql> exit;

Install the API service and engine

	Create a folder to which all murano components will be stored:

mkdir ~/murano

	Clone the murano git repository to the management server:

cd ~/murano
git clone git://git.openstack.org/openstack/murano

	Create the configuration file. Murano has a common configuration
file for API and engine services.

	Generate a sample configuration file using tox:

cd ~/murano/murano
tox -e genconfig

	Create a copy of murano.conf for further modifications:

cd ~/murano/murano/etc/murano
cp murano.conf.sample murano.conf

	Edit the murano.conf file. An example below contains the basic
configuration.

Note

The example uses MySQL database. If you want to use another
database type, edit the [database] section correspondingly.

Replace items in “%” with the actual values. For example, replace
%RABBITMQ_SERVER_IP% with 127.0.0.1. So, the complete row with the
replaced value will be rabbit_host = 127.0.0.1

[DEFAULT]
debug = true
verbose = true
rabbit_host = %RABBITMQ_SERVER_IP%
rabbit_userid = %RABBITMQ_USER%
rabbit_password = %RABBITMQ_PASSWORD%
rabbit_virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%

...

[database]
connection = mysql+pymysql://murano:%MURANO_DB_PASSWORD%@127.0.0.1/murano

...

[keystone]
auth_url = 'http://%OPENSTACK_HOST_IP%:5000'

...

[keystone_authtoken]
auth_uri = 'http://%OPENSTACK_HOST_IP%:5000'
auth_host = '%OPENSTACK_HOST_IP%'
auth_port = 5000
auth_protocol = http
admin_tenant_name = %OPENSTACK_ADMIN_TENANT%
admin_user = %OPENSTACK_ADMIN_USER%
admin_password = %OPENSTACK_ADMIN_PASSWORD%

...

[murano]
url = http://%YOUR_HOST_IP%:8082

[rabbitmq]
host = %RABBITMQ_SERVER_IP%
login = %RABBITMQ_USER%
password = %RABBITMQ_PASSWORD%
virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%

[networking]
default_dns = 8.8.8.8 # In case OpenStack neutron has no default
 # DNS configured

[oslo_messaging_notifications]
driver = messagingv2

	Create a virtual environment and install murano prerequisites
using tox. The virtual environment will be created under
the tox directory.

	Install MySQL driver since it is not a part of the murano requirements:

tox -e venv -- pip install PyMYSQL

	Create database tables for murano:

cd ~/murano/murano
tox -e venv -- murano-db-manage \
--config-file ./etc/murano/murano.conf upgrade

	Launch the murano API in a separate terminal:

cd ~/murano/murano
tox -e venv -- murano-api --config-file ./etc/murano/murano.conf

Note

Run the command in a new terminal as the process will be running in
the terminal until you terminate it, therefore, blocking the current
terminal.

	Leaving the API process running, return to the previous console and
import murano core library and other libraries from the meta
directory:

cd ~/murano/murano/meta/
for i in */; do pushd ./"$i"; zip -r ../../"${i%/}.zip" *; popd; done
cd ..
tox -e venv -- murano --os-username %OPENSTACK_ADMIN_USER% \
--os-password %OPENSTACK_ADMIN_PASSWORD% \
--os-auth-url http://%OPENSTACK_HOST_IP%:5000 \
--os-project-name %OPENSTACK_ADMIN_TENANT% \
--murano-url http://%MURANO_IP%:8082 \
package-import --is-public *.zip
rm *.zip

	Launch the murano engine in a separate terminal:

cd ~/murano/murano
tox -e venv -- murano-engine --config-file ./etc/murano/murano.conf

Note

Run the command in a new terminal as the process will be running in
the terminal until you terminate it, therefore, blocking the current
terminal.

Register in keystone

To make the murano API available to all OpenStack users, you need to register
the Application Catalog service within the Identity service.

	Add the application-catalog service to keystone:

openstack service create --name murano --description \
"Application Catalog for OpenStack" application-catalog

	Provide an endpoint for this service:

openstack endpoint create --region RegionOne --publicurl 'http://%MURANO_IP%:8082/' \
--adminurl 'http://%MURANO_IP%:8082/' --internalurl 'http://%MURANO_IP%:8082/' \
%MURANO_SERVICE_ID%

where MURANO-SERVICE-ID is the unique service number that can be found
in the openstack service create output.

Note

URLs (--publicurl, --internalurl, and --adminurl values)
may differ depending on your environment.

Install the murano dashboard

This section describes how to install and run the murano dashboard.

	Clone the repository with the murano dashboard:

cd ~/murano
git clone git://git.openstack.org/openstack/murano-dashboard

	Clone the horizon repository:

git clone git://git.openstack.org/openstack/horizon

	Create a virtual environment and install muranodashboard
as an editable module:

cd horizon
tox -e venv -- pip install -e ../murano-dashboard

	Prepare local settings.

cp openstack_dashboard/local/local_settings.py.example \
openstack_dashboard/local/local_settings.py

For more information, check out the official
horizon documentation [http://docs.openstack.org/developer/horizon/topics/settings.html#openstack-settings-partial].

	Enable and configure Murano dashboard in the OpenStack Dashboard:

	For the Newton (and later) OpenStack installations, copy plug-in file
local settings files, and policy files:

cp ../murano-dashboard/muranodashboard/local/enabled/*.py \
openstack_dashboard/local/enabled/

cp ../murano-dashboard/muranodashboard/local/local_settings.d/*.py \
openstack_dashboard/local/local_settings.d/

cp ../murano-dashboard/muranodashboard/conf/* openstack_dashboard/conf/

	For the OpenStack installations prior to the Newton release, run:

cp ../murano-dashboard/muranodashboard/local/_50_murano.py \
openstack_dashboard/local/enabled/

Customize local settings of your horizon installation, by editing the
openstack_dashboard/local/local_settings.py file:

...
ALLOWED_HOSTS = '*'

Provide your OpenStack Lab credentials
OPENSTACK_HOST = '%OPENSTACK_HOST_IP%'

...

DEBUG_PROPAGATE_EXCEPTIONS = DEBUG

Change the default session back end from browser cookies to database
to avoid issues with forms during the applications creation:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'murano-dashboard.sqlite',
 }
}

SESSION_ENGINE = 'django.contrib.sessions.backends.db'

	(Optional) If you do not plan to get the murano service from the keystone
application catalog, specify where the murano-api service is running:

MURANO_API_URL = 'http://%MURANO_IP%:8082'

	(Optional) If you have set up the database as a session back end (this is
done by default with murano local_settings file starting with Newton),
perform database migration:

tox -e venv -- python manage.py migrate --noinput

Since a separate user is not required for development purpose,
you can reply no.

	Run Django server at 127.0.0.1:8000 or provide a different IP
and PORT parameters:

tox -e venv -- python manage.py runserver <IP:PORT>

Note

The development server restarts automatically on every code change.

Result: The murano dashboard is available at http://IP:PORT.

Import murano applications

To fill the application catalog, you need to import applications to your
OpenStack environment. You can import applications using the murano dashboard,
as well as the command-line client.

To import applications using CLI, complete the following tasks:

	Clone the murano apps repository:

cd ~/murano
git clone git://git.openstack.org/openstack/murano-apps

	Import every package you need from this repository by running
the following command:

cd ~/murano/murano
pushd ../murano-apps/Docker/Applications/%APP-NAME%/package
zip -r ~/murano/murano/app.zip *
popd
tox -e venv -- murano --murano-url http://%MURANO_IP%:8082 package-import app.zip

Result: The applications are imported and available from the application
catalog.

Configure SSL

Murano components can work with SSL. This section provides information on
how to set SSL properly.

Configure SSL for Murano API

To configure SSL for the Murano API service, modify the [ssl] section in /etc/murano/murano.conf:

[ssl]
cert_file = <PATH>
key_file = <PATH>
ca_file = <PATH>

	Parameter
	Description

	cert_file
	A path to the certificate file the server should use when binding to an SSL-wrapped socket.

	key_file
	A path to the private key file the server should use when binding to an SSL-wrapped socket.

	ca_file
	A path to the CA certificate file the server should use to validate client certificates provided during an SSL handshake. This parameter is ignored if the cert_file and key_file parameters are not set.

Murano API starts using SSL automatically after you point to the HTTPS protocol
instead of HTTP during the registration of the Murano API service
in endpoints, modifying the publicurl argument to start with https://.

SSL for Murano API is implemented the same way as in any other OpenStack
component. See ssl python module [https://docs.python.org/2/library/ssl.html] for details.

Configure SSL for RabbitMQ

All murano components communicate with each other using RabbitMQ.
By default, all messages in RabbitMQ are not encrypted. You can encrypt
this interaction with SSL. Configure each RabbitMQ exchange separately.

Murano API <-> RabbitMQ <-> Murano engine

Modify the [default] section in the /etc/murano/murano.conf file:

	Enable SSL for RabbitMQ:

connect over SSL for RabbitMQ (boolean value)
rabbit_use_ssl = true

	Set the kombu parameters.

Specify the paths to the SSL key file and SSL CA certificate in a regular
</PATH/TO/FILE> format without quotes or leave them empty to enable
self-signed certificates:

SSL version to use (valid only if SSL enabled). valid values
are TLSv1, SSLv23 and SSLv3. SSLv2 may be available on some
distributions (string value)
kombu_ssl_version =

SSL key file (valid only if SSL enabled) (string value)
kombu_ssl_keyfile =

SSL cert file (valid only if SSL enabled) (string value)
kombu_ssl_certfile =

SSL certification authority file (valid only if SSL enabled)
(string value)
kombu_ssl_ca_certs =

Murano agent -> RabbitMQ

To encrypt the communication between the murano agent and RabbitMQ,
set ssl = True in the [rabbitmq] section of
/etc/murano/murano.conf:

[rabbitmq]
...
ssl = True
insecure = False

If you want to configure the murano agent differently, you need to change
the default template [http://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Resources/Agent-v1.template] located in the murano core library.
After you finish with the template modification, verify that you zip and
re-upload the murano core library.

Configure SSL for the Dashboard

If you do not plan to use self-signed certificates, no additional
configurations are required. Just point your web browser to the URL
starting with https://.

Otherwise, set the MURANO_API_INSECURE parameter to True in
/etc/openstack-dashboard/local_settings.py.

Prepare a lab for murano

This section provides basic information about lab’s system requirements.
It also contains a description of a test which you may use to check if
your hardware fits the requirements. To do this, run the test and
compare the results with baseline data provided.

System prerequisites

Supported operating systems

	Ubuntu Server 12.04 LTS

	RHEL/CentOS 6.4

System packages are required for Murano

Ubuntu

	gcc

	python-pip

	python-dev

	libxml2-dev

	libxslt-dev

	libffi-dev

	libpq-dev

	python-openssl

	mysql-client

Install all the requirements on Ubuntu by running:

sudo apt-get install gcc python-pip python-dev \
libxml2-dev libxslt-dev libffi-dev \
libpq-dev python-openssl mysql-client

CentOS

	gcc

	python-pip

	python-devel

	libxml2-devel

	libxslt-devel

	libffi-devel

	postgresql-devel

	pyOpenSSL

	mysql

Install all the requirements on CentOS by running:

sudo yum install gcc python-pip python-devel libxml2-devel \
libxslt-devel libffi-devel postgresql-devel pyOpenSSL \
mysql

Lab requirements

	Criteria
	Minimal
	Recommended

	CPU
	4 core @ 2.4 GHz
	24 core @ 2.67 GHz

	RAM
	8 GB
	24 GB or more

	HDD
	2 x 500 GB (7200 rpm)
	4 x 500 GB (7200 rpm)

	RAID
	Software RAID-1 (use mdadm as
it will improve read
performance almost two times)
	Hardware RAID-10

Table: Hardware requirements

There are a few possible storage configurations except the shown above.
All of them were tested and were working well.

	1x SSD 500+ GB

	
	1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto

	the HDD and mount the SSD drive to folder where VM images are)

	1x HDD (15000 rpm) 500+ GB

Test your lab host performance

We have measured time required to boot 1 to 5 instances of Windows
system simultaneously. You can use this data as the baseline to check if
your system is fast enough.

You should use sysprepped images for this test, to simulate VM first
boot.

Steps to reproduce test:

	Prepare Windows 2012 Standard (with GUI) image in QCOW2 format. Let’s
assume that its name is ws-2012-std.qcow2

	Ensure that there is NO KVM PROCESSES on the host. To do this, run
command:

ps aux | grep kvm

	Make 5 copies of Windows image file:

for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

	Create script start-vm.sh in the folder with .qcow2 files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm -m 1024 -drive file=ws-2012-std-$i.qcow2,if=virtio -net user -net nic,model=virtio -nographic -usbdevice tablet -vnc :$i & done

	Start ONE instance with command below (as root) and measure time
between VM’s launch and the moment when Server Manager window
appears. To view VM’s desktop, connect with VNC viewer to your host
to VNC screen :1 (port 5901):

sudo ./start-vm.sh 1

	Turn VM off. You may simply kill all KVM processes by

sudo killall kvm

	Start FIVE instances with command below (as root) and measure time
interval between ALL VM’s launch and the moment when LAST Server Manager
window appears. To view VM’s desktops, connect with VNC viewer to your
host to VNC screens :1 thru :5 (ports 5901-5905):

sudo ./start-vm.sh 5

	Turn VMs off. You may simply kill all KVM processes by

sudo killall kvm

Baseline data

The table below provides baseline data which we’ve got in our
environment.

	
	Boot 1 instance
	Boot 5 instances

	Avg. Time
	3m:40s
	8m

	Max. Time
	5m
	20m

Avg. Time refers to the lab with recommended hardware configuration,
while Max. Time refers to minimal hardware configuration.

Host optimizations

Default KVM installation could be improved to provide better
performance.

The following optimizations may improve host performance up to 30%:

	change default scheduler from CFQ to Deadline

	use ksm

	use vhost-net

Configuration

Network configuration

Murano may work in various networking environments and is capable of detecting
the current network configuration and choosing appropriate settings
automatically. However, some additional actions are required to support
advanced scenarios.

Nova-network support

Nova-network is the simplest networking solution, which has limited
capabilities but is available on any OpenStack deployment without the need to
deploy any additional components.

When a new murano environment is created, murano checks if a dedicated
networking service, for example, neutron, exists in the current OpenStack
deployment. It relies on the Identity service catalog for that. If such a
service is not present, murano automatically falls back to nova-network. No
further configuration is needed in this case, all the VMs spawned by Murano
will be joining the same network.

Neutron support

If neutron is installed, murano enables its advanced networking features that
give you the ability to avoid configuring networks for your application.

By default, it creates an isolated network for each environment and joins
all VMs needed by your application to that network. To install and configure
the application in a newly spawned virtual machine, murano also requires a
router to be connected to the external network.

Automatic neutron configuration

To create the router automatically, provide the following parameters in the
configuration file:

[networking]

external_network = %EXTERNAL_NETWORK_NAME%
router_name = %MURANO_ROUTER_NAME%
create_router = true

To figure out the name of the external network, run
openstack network list --external.

During the first deployment, the required networks and router with a specified
name will be created and set up.

Manual neutron configuration

To configure neutron manually, follow the steps below.

	Create a public network.

	Log in to the OpenStack dashboard as an administrator.

	Verify the existence of external networks. For this, navigate to
Project > Network > Network Topology.

	Check the network type in network details. For this, navigate to
Admin > Networks and see the Network name
section.
Alternatively, run the openstack network list --external
command using CLI.

	Create a new external network as described in the OpenStack documentation [http://docs.openstack.org/cli-reference/openstack.html#openstack-network-create].

[image: Network Topology page]

	Create a local network.

	Navigate to Project > Network > Networks.

	Click Create Network and fill in the form.

	Create a router.

	Navigate to Project > Network > Routers.

	Click Create Router.

	In the Router Name field, enter murano-default-router.
If you specify a name other than murano-default-router, change the
following settings in the configuration file:

[networking]

router_name = %SPECIFIED_NAME%
create_router = false

	Click Create router.

	Click the newly created router name.

	In the Interfaces tab, click Add Interface.

	Specify the subnet and IP address.

[image: Add Interface dialog]

	Verify the result in
Project > Network > Network Topology.

[image: Network Topology page]

Policy configuration

Like each service in OpenStack, Murano has its own role-based access policies
that determine who can access objects and under what circumstances. The default
implementation for these policies is defined in the service’s source code –
under murano.common.policies. The default policy definitions can be
overridden using the policy.yaml file.

Note

In previous OpenStack releases the default policy format was JSON, but
now the recommended format [https://docs.openstack.org/ocata/config-reference/policy-yaml-file.html#older-json-format-policy]
is YAML.

On each API call the corresponding policy check is performed.
policy.yaml file can be changed without interrupting the API service.

For detailed information on policy.yaml syntax, please refer to the
OpenStack official documentation [https://docs.openstack.org/ocata/config-reference/policy-yaml-file.html]

With this file you can set who may upload packages and perform other operations.

The policy.yaml example is:

Rule declaration
"context_is_admin": "role:admin"
"admin_api": "is_admin:True"
"default": ""

Package operations
"get_package": "rule:default"
"upload_package": "rule:default"
"modify_package": "rule:default"
"publicize_package": "rule:admin_api"
"manage_public_package": "rule:default"
"delete_package": "rule:default"
"download_package": "rule:default"

Category operations
"get_category": "rule:default"
"delete_category": "rule:admin_api"
"add_category": "rule:admin_api"

Deployment read operations
"list_deployments": "rule:default"
"statuses_deployments": "rule:default"

Environment operations
"list_environments": "rule:default"
"list_environments_all_tenants": "rule:admin_api"
"show_environment": "rule:default"
"update_environment": "rule:default"
"create_environment": "rule:default"
"delete_environment": "rule:default"

Environment template operations
"list_env_templates": "rule:default"
"create_env_template": "rule:default"
"show_env_template": "rule:default"
"update_env_template": "rule:default"
"delete_env_template": "rule:default"

Control on executing actions on deployment environments
"execute_action": "rule:default"

So, changing "upload_package": "rule:default" to "rule:admin_api"
will forbid regular users from uploading packages.

For reference:

	"get_package" is checked whenever a user accesses a package
from the catalog. default: anyone

	"upload_package" is checked whenever a user uploads a package
to the catalog. default: anyone

	"modify_package" is checked whenever a user modifies a package
in the catalog. default: anyone

	"publicize_package" is checked whenever a user is trying to
make a murano package public (both when creating a new package or
modifying an existing one). default: admin users

	"manage_public_package" is checked whenever a user attempts to
modify parameters of a public package. default: admin users

	"delete_package" is checked whenever a user attempts to
delete a package from the catalog. default: anyone

	"download_package" is checked whenever a user attempts to
download a package from the catalog. default: anyone

	"list_environments_all_tenants" is checked whenever a request
to list environments of all tenants is made. default: admin users

	"execute_action" is checked whenever a user attempts to execute
an action on deployment environments. default: anyone

Note

The package upload wizard in Murano dashboard consists of several steps:
The “upload_package” policy is enforced during the first step while
“modify_package” is enforced during the second step. Package parameters are
modified during package upload. So, please modify both policy definitions
together. Otherwise it will not be possible to browse package details on the
second step of the wizard.

Managing packages

Managing packages on engine side

To get access to the contents of murano packages, murano-engine queries
murano-api. However, it is also possible to specify a list of directories
that may contain packages locally. This option is useful to speed up
debugging and development of packages and/or to save bandwidth between the API
and the engine. If local directories are specified, they are examined before
querying the API.

Local package directories

To define a list of directories where the engine would look for package files,
set the load_packages_from option in the engine section
of the murano.conf configuration file. This option can be set to a
comma-separated list of directory paths. Whenever an engine needs to access a
package, it would inspect these directories first, before accessing
murano-api.

API package cache

If the package was not found in any of the load_packages_from directories,
or if none were specified, then murano-engine queries API for package
contents.
Whenever murano-engine downloads a package from API, it stores and unpacks
it locally. The engine uses the directory defined in the packages_cache
option in the engine section of the murano.conf
configuration file. If it is not used, a temporary directory is created.

The enable_packages_cache option in the same section defines whether the
packages would persist on disk or not. When set to False, each package
downloaded from API is stored in a separate directory, that will be deleted
after the deployment (or action) is over. This means that every deployment
or action execution needs to download all the packages it requires,
regardless of any packages previously downloaded by the engine. When set to
True (default), the engine shares downloaded packages between deployments
and action executions. This means that packages persist on disk and have to be
eventually deleted. Therefore, whenever the engine requires a package and that
package is not found locally, the engine downloads the package. Afterwards, it
checks all the previously cached packages with the same FQN and same version.
If the cached package is not required by any ongoing deployment, it gets
deleted. Otherwise, it stays on disk until a new version is downloaded.

Note

On UNIX-based operating systems, murano uses fcntl for IPC locks that
support both shared and exclusive locking. On Windows, msvcrt is used.
It does not support shared file locks. Therefore, enabling package cache
mechanism under Windows might result in performance decrease, since only
one process would be able to use one package at the same time.

Managing images

Build an image

Manage images

Managing categories

Murano repository

Use an existing repository

Set up a custom repository

Murano agent

Murano easily installs and configures necessary software on new virtual
machines. Murano agent is one of the main participants of these processes.

Usually, it is enough to execute a single script to install a simple
application. A more complex installation requires a deep script result
analysis. For example, we have a cross-platform application. The first script
determines the operation system and the second one calls an appropriate
installation script. Note, that installation script may be written in different
languages (the shell for Linux and PowerShell for Windows). Murano agent can
easily handle this situation and even more complicated ones.

So murano agent operates not with scripts, but with execution plans, which are
minimum units of the installation workflow.

Murano-agent on a new VM

Earlier most of the application deployments were possible only on images with
pre-installed murano agent. You can refer to
corresponding documentation
on building an image with murano-agent.

Currently murano-agent can be automatically installed by cloud-init. To deploy
an application on an image with pre-installed cloud-init you should mark the
image with Murano specific metadata. More information about preparing images
can be found here. This type of installation has some
limitations. The image has to have pre-installed python 2.7. Murano-agent is
installed from PyPi so the instance should have connectivity with the Internet.
Also it requires an installation of some python packages, e.g. python-pip,
python-dev, python-setuptools, python-virtualenv, which are also installed by
cloud-init.

Interaction with murano-engine

First of all, communication between murano-agent and murano engine should be
established. The communication is performed through AMQP protocol. This type of
communication is preferable (for example, compared to SSH) because it is:

	Durable

	To establish the connection, there is no need to wait until the
instance is spawned. Murano-agent, on its turn, does not need
to wait for a murano-engine task.

	Messages can be sent to RabbitMQ asynchronously.

	The connection does not depend on network issues. And moreover, there is no
way to physically connect to the virtual machine if floating IP is not set.

	It is possible to reload the instance and change network parameters during
the deployment.

	Reliable

If one instance of murano-engine fails in the middle of the deployment,
another one picks up the messages from the queue and continue the deployment.

Right after application author calls the deploy method of the class, inherited from
io.murano.resources.Instance, new murano-agent configuration file starts
forming in accordance with the values specified in the [rabbitmq] murano
configuration file section. A script that runs through cloud-init copies a
new file to the right place during the instance booting.

Execution plans and execution plan templates

It was already mentioned that murano-agent recognizes execution plans.
These instructions contain scripts with all the required parameters
The application package author provides the execution plan templates together
with scripts code. During the deployment it is complemented with all required
parameters (including user-input).

For more information on execution plan templates, refer to
Execution plan template.

Take a look at the muranoPL code snippet. The``EtcdAddMember`` template expects
name and ip parameters. The first line shows that these parameters are
passed to the template, and the second one shows that the template is sent to
the agent:

- $template: $resources.yaml('EtcdAddMember.template').bind(dict(
 name => $.instance.name,
 ip => $.getIp()
))
- $clusterConfig: $._cluster.masterNode.instance.agent.call($template, $resources)

Beside the simple agent call, there is a method that enables sending an already
prepared execution plan (not a template). The main difference between template
and full execution plan is in the files section. Prepared execution plan contains
file contents and name by which they are reachable. So it is not required to
provide the resources argument:

..instance.agent.callRaw($plan)

Also, there are instance.agent.call($template, $resources) and
..instance.agent.sendRaw($plan) methods which have the same meaning but
indicate the engine not to wait for the script execution result. The default
agent call response time (with the corresponding method call) is set in
murano configuration file and equals to one hour. Take a look at the engine
section:

[engine]
Time for waiting for a response from murano-agent during the
deployment (integer value)
agent_timeout = 3600

Note

Murano-agent is able to run different types of scripts,
such as powershell, python, bash, chef, and puppets. Moreover, it has
a mechanism for extending supported formats and that is why murano
agent is called unified

To use puppet a deployment workflow, configure an execution plan as follows:

	Set correct version of format:

FormatVersion >=2.1.0. Previous formats does not support puppet execution.

	Use corresponding type

In the script section, script item should have Type: Puppet

	Provide entry-point class

Use puppet syntax EntryPoint: mysql::server

Note

You can use scripts directly from git or svn repositories:

Files:
 - mysql: https://github.com/nanliu/puppet-staging.git

A script output is available in the murano-agent log file. This file is located
on the spawned instance at /etc/murano/agent.conf on a Linux-based
machine, or C:\Murano\Agent\agent.conf on a Windows-based machine.
You can also refer to murano-agent log if there is no connectivity with
murano-engine (check if RabbitMQ settings are updated) or to track
deployment execution.

Policy enforcement

Policies are defined and evaluated in the Congress [https://wiki.openstack.org/wiki/Congress] project.
The policy language for Congress is Datalog. The congress policy consists
of the Datalog rules and facts.

Examples of policies are as follows:

	Minimum 2 GB of RAM for all VM instances.

	A certified version for all Apache server instances.

	Data placement policy: all database instances must be deployed at a given
geographic location enforcing some law restriction on data placement.

These policies are evaluated over data in the form of tables (Congress data
structures). A deployed Murano environment must be decomposed to the Congress
data structures. The decomposed environment is sent to Congress for simulation.
Congress simulates whether the resulting state violates any defined
policy: deployment is aborted in case of policy violation.

Murano uses two predefined policies in Congress:

	murano_system contains rules and facts of policies defined by the cloud
administrator.

	murano contains only facts/records reflecting the resulting state after
the deployment of an environment.

Records in the murano policy are queried by rules from
the murano_system policy. The Congress simulation does not create any
records in the murano policy, and only provides the feedback on whether
the resulting state violates the policy or not.

As a part of the policy guided fulfillment, you need to enforce policies
on a murano environment deployment. If the policy enforcement fails,
the deployment fails as well.

This section contains the following subsections:

	Setting up policy enforcement

	Creating policy enforcement rules

	Murano policy enforcement internals
	Model decomposition

	Using policy for the base modification of an environment
	Creating base modification rules

Setting up policy enforcement

Before you use the policy enforcement feature, configure Murano and Congress
properly.

Note

This article does not cover Murano and Congress configuration options
useful for Murano application deployment, for example, DNS setup,
floating IPs, and so on.

To enable policy enforcement, complete the following tasks:

	In Murano:

	Enable the enable_model_policy_enforcer option
in the murano.conf file:

[engine]
Enable model policy enforcer using Congress (boolean value)
enable_model_policy_enforcer = true

	Restart murano-engine.

	Verify that Congress is installed and available in your OpenStack
environment. See the details in the Congress official documentation [http://congress.readthedocs.org/en/latest/].

	Install the congress command-line client [http://docs.openstack.org/user-guide/common/cli_install_openstack_command_line_clients.html]
as any other OpenStack command-line client.

	For Congress, configure the following policies that policy enforcement uses
during the evaluation:

	murano policy

It is created by the Congress` murano datasource driver, which is a part
of Congress. Configure it for the OpenStack project (tenant) where you plan to
deploy your Murano application. Datasource driver retrieves deployed
Murano environments and populates Congress’ murano policy tables.
See Murano policy enforcement internals for details.

Remove the existing murano policy and create a new murano policy
configured for the demo project, by running:

remove default murano datasource configuration, because it is using 'admin' project. We need 'demo' project to be used.
openstack congress datasource delete murano
openstack congress datasource create murano murano --config username="$OS_USERNAME" --config tenant_name="demo" --config password="$OS_PASSWORD" --config auth_url="$OS_AUTH_URL"

	murano_system policy

It holds the user-defined rules for policy enforcement. Typically,
the rules use tables from other policies, for example, murano, nova,
keystone, and others. Policy enforcement expects the predeploy_errors
table here that is available on the predeploy_errors rules creation.

Create the murano_system rule, by running:

create murano_system policy
openstack congress policy create murano_system

resolves objects within environment
openstack congress policy rule create murano_system 'murano_env_of_object(oid,eid):-murano:connected(eid,oid), murano:objects(eid,tid,"io.murano.Environment")'

	murano_action policy with internal management rules.

These rules are used internally in the policy enforcement request
and stored in a dedicated murano_action policy that is
created here. They are important in case an environment is redeployed.

create murano_action policy
openstack congress policy create murano_action --kind action

register action deleteEnv
openstack congress policy rule create murano_action 'action("deleteEnv")'

states
openstack congress policy rule create murano_action 'murano:states-(eid, st) :- deleteEnv(eid), murano:states(eid, st)'

parent_types
openstack congress policy rule create murano_action 'murano:parent_types-(tid, type) :- deleteEnv(eid), murano:connected(eid, tid),murano:parent_types(tid,type)'
openstack congress policy rule create murano_action 'murano:parent_types-(eid, type) :- deleteEnv(eid), murano:parent_types(eid,type)'

properties
openstack congress policy rule create murano_action 'murano:properties-(oid, pn, pv) :- deleteEnv(eid), murano:connected(eid, oid), murano:properties(oid, pn, pv)'
openstack congress policy rule create murano_action 'murano:properties-(eid, pn, pv) :- deleteEnv(eid), murano:properties(eid, pn, pv)'

objects
openstack congress policy rule create murano_action 'murano:objects-(oid, pid, ot) :- deleteEnv(eid), murano:connected(eid, oid), murano:objects(oid, pid, ot)'
openstack congress policy rule create murano_action 'murano:objects-(eid, tnid, ot) :- deleteEnv(eid), murano:objects(eid, tnid, ot)'

relationships
openstack congress policy rule create murano_action 'murano:relationships-(sid, tid, rt) :- deleteEnv(eid), murano:connected(eid, sid), murano:relationships(sid, tid, rt)'
openstack congress policy rule create murano_action 'murano:relationships-(eid, tid, rt) :- deleteEnv(eid), murano:relationships(eid, tid, rt)'

connected
openstack congress policy rule create murano_action 'murano:connected-(tid, tid2) :- deleteEnv(eid), murano:connected(eid, tid), murano:connected(tid,tid2)'
openstack congress policy rule create murano_action 'murano:connected-(eid, tid) :- deleteEnv(eid), murano:connected(eid,tid)'

Creating policy enforcement rules

This article illustrates how you can create policy enforcement rules.
For testing purposes, create rules that prohibit the creation
of instances with the flavor with over 2048 MB of RAM following
the procedure below.

Procedure:

	Verify that you have configured your OpenStack environment as described
in Setting up policy enforcement.

	To create the predeploy_errors rule, run:

congress policy rule create murano_system "predeploy_errors(eid, obj_id, msg) :- murano:objects(obj_id, pid, type), murano:objects(eid, tid, \"io.murano.Environment\"), murano:connected(eid, pid), murano:properties(obj_id, \"flavor\", flavor_name), flavor_ram(flavor_name, ram), gt(ram, 2048), murano:properties(obj_id, \"name\", obj_name), concat(obj_name, \": instance flavor has RAM size over 2048MB\", msg)"

The command above contains the following information:

predeploy_errors(eid, obj_id, msg) :-
 murano:objects(obj_id, pid, type),
 murano:objects(eid, tid, "io.murano.Environment"),
 murano:connected(eid, pid),
 murano:properties(obj_id, "flavor", flavor_name),
 flavor_ram(flavor_name, ram),
 gt(ram, 2048),
 murano:properties(obj_id, "name", obj_name),
 concat(obj_name, ": instance flavor has RAM size over 2048MB", msg)

Policy validation engine checks the predeploy_errors rule, and rules
referenced within this rule are evaluated by the Congress engine.

In this example, we create the rule that references the flavor_ram
rule we create afterwards. It disables flavors with RAM more than
2048 MB and constructs the message returned to the user
in the msg variable.

In this example we use data from policy murano which is represented by
murano:properties. There are stored rows with decomposition of model
representing murano application. We also use built-in functions of Congress:

	gt stands for ‘greater-than’

	concat joins two strings into one variable

	To create the flavor_ram rule, run:

congress policy rule create murano_system "flavor_ram(flavor_name, ram) :- nova:flavors(id, flavor_name, cpus, ram)"

This rule resolves parameters of flavor by flavor name and returns
the ram parameter. It uses the flavors rule from nova policy.
Data in this policy is filled by the nova datasource driver.

	Check the rule usage.

	Create an environment with a simple application:

	Select an application from the murano applications.

	Create a m1.medium instance, which uses 4096 MB RAM.

[image: Create new instance]

	Deploy the environment.

Deployment fails as the rule is violated: environment is in the Deploy
FAILURE status. Check the deployment logs for details:

[image: Deployment log]

See also

	Creating base modification rules

Murano policy enforcement internals

This section describes internals of the murano policy enforcement
feature.

Model decomposition

The data for the policy validation comes from the models of Murano
applications. These models are transformed to a set of rules that are
processed by Congress.

There are several tables created in murano policy for different kinds
of rules that are as follows:

	murano:objects(object_id, parent_id, type_name)

	murano:properties(object_id, property_name, property_value)

	murano:relationships(source, target, name)

	murano:connected(source, target)

	murano:parent_types(object_id, parent_type_name)

	murano:states(environment_id, state)

murano:objects(object_id, parent_id, type_name)

This rule is used for representation of all objects in Murano model,
such as environment, application, instance, and other.

Value of the type property is used as the type_name parameter:

name: wordpress-env
'?': {type: io.murano.Environment, id: 83bff5ac}
applications:
- '?': {id: e7a13d3c, type: com.example.databases.MySql}

The model above transforms to the following rules:

	murano:objects+("83bff5ac", "tenant_id", "io.murano.Environment")

	murano:objects+("83bff5ac", "e7a13d3c", "com.example.databases.MySql")

Note

The owner of the environment is a project (tenant).

murano:properties(object_id, property_name, property_value)

Each object may have properties. In this example we have an application
with one property:

applications:
- '?': {id: e7a13d3c, type: com.example.databases.MySql}
database: wordpress

The model above transforms to the following rule:

	murano:properties+("e7a13d3c", "database", "wordpress")

Inner properties are also supported using dot notation:

instance:
'?': {id: 825dc61d, type: io.murano.resources.LinuxMuranoInstance}
networks:
 useFlatNetwork: false

The model above transforms to the following rule:

	murano:properties+("825dc61d", "networks.useFlatNetwork", "False")

If a model contains list of values, it is represented as a set of multiple
rules:

instances:
 - '?': {id: be3c5155, type: io.murano.resources.LinuxMuranoInstance}
 networks:
 customNetworks: [10.0.1.0, 10.0.2.0]

The model above transforms to the following rules:

	murano:properties+("be3c5155", "networks.customNetworks", "10.0.1.0")

	murano:properties+("be3c5155", "networks.customNetworks", "10.0.2.0")

murano:relationships(source, target, name)

Murano application models may contain references to other applications.
In this example, the WordPress application references MySQL in
the database property:

applications:
- '?':
 id: 0aafd67e
 type: com.example.databases.MySql
- '?':
 id: 50fa68ff
 type: com.example.WordPress
 database: 0aafd67e

The model above transforms to the following rule:

	murano:relationships+("50fa68ff", "0aafd67e", "database")

Note

For the database property we do not create
the murano:properties+ rule.

If we define an object within other object, they will have relationships
between them:

applications:
- '?':
 id: 0aafd67e
 type: com.example.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}

The model above transforms to the following rule:

	murano:relationships+("0aafd67e", "ed8df2b0", "instance")

There are special relationships of services from the environment
to its applications: murano:relationships+("env_id", "app_id",
"services")

murano:connected(source, target)

This table stores both direct and indirect connections between instances.
It is derived from murano:relationships:

applications:
- '?':
 id: 0aafd67e
 type: com.example.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}
- '?':
 id: 50fa68ff
 type: com.example.WordPress
 database: 0aafd67e

The model above transforms to the following rules:

	murano:connected+("50fa68ff", "0aafd67e") # WordPress to MySql

	murano:connected+("50fa68ff", "ed8df2b0") # WordPress to LinuxMuranoInstance

	murano:connected+("0aafd67e", "ed8df2b0") # MySql to LinuxMuranoInstance

murano:parent_types(object_id, parent_name)

Each object in murano has a class type. These classes may inherit from one
or more parents. For example, LinuxMuranoInstance > LinuxInstance >
Instance:

instances:
- '?': {id: be3c5155, type: LinuxMuranoInstance}

The model above transforms to the following rules:

	murano:objects+("...", "be3c5155", "LinuxMuranoInstance")

	murano:parent_types+("be3c5155", "LinuxMuranoInstance")

	murano:parent_types+("be3c5155", "LinuxInstance")

	murano:parent_types+("be3c5155", "Instance")

Note

The type of an object is also repeated in its parent types
(LinuxMuranoInstance in the example) for easier handling of
user-created rules.

Note

If a type inherits from more than one parent, and these parents inherit
from one common type, the parent_type rule is included only once in
the common type.

murano:states(environment_id, state)

Currently only one record for environment is created:

	murano:states+("uugi324", "pending")

Using policy for the base modification of an environment

Congress policies enables a user to define modification of an environment
prior to its deployment. This includes:

	Adding components, for example, monitoring.

	Changing and setting properties, for example enforcing a given zone,
flavors, and others.

	Configuring relationships within an environment.

Use cases examples:

	Installation of the monitoring agent on each VM instance
by adding a component with the agent and creating relationship
between the agent and instance.

	Enabling a certified version to all Apache server instances:
setting the version property to all Apache applications within
an environment to a particular version.

These policies are evaluated over data in the form of tables that are Congress
data structures. A deployed murano environment must be decomposed to Congress
data structures. The further workflow is as follows:

	The decomposed environment is sent to Congress for simulation.

	Congress simulates whether the resulting state requires modification.

	In case the modification of a deployed environment is required,
Congress returns a list of actions in the YAML format
to be performed on the environment prior to the deployment.

For example:

set-property: {object_id: c46770dec1db483ca2322914b842e50f, prop_name: keyname, value: production-key}

The example above sets the keyname property to the production-key
value on the instance identified by object_id. An administrator can use
it as an output of the Congress rules.

	The action specification is parsed in murano. The given action class is
loaded, and the action instance is created.

	The parsed parameters are supplied to the action __init__ method.

	The action is performed on a given environment (the modify method).

Creating base modification rules

This example illustrates how to configure the rule enforcing all VM instances
to deploy with a secure key pair. This may be required in a production
environment.

Warning

Before you create rules, configure your OpenStack environment as described
in Setting up policy enforcement.

Procedure:

	To create the predeploy_modify rule, run:

congress policy rule create murano_system 'predeploy_modify(eid, obj_id, action):-murano:objects(obj_id, pid, type), murano_env_of_object(obj_id, eid), murano:properties(obj_id, "keyname", kn), concat("set-property: {object_id: ", obj_id, first_part), concat(first_part, ", prop_name: keyname, value: production-key}", action)'

The command above contains the following information:

predeploy_modify(eid, obj_id, action) :-
 murano:objects(obj_id, pid, type),
 murano:objects(eid, tid, "io.murano.Environment"),
 murano:connected(eid, pid),
 murano:properties(obj_id, "keyname", kn),
 concat("set-property: {object_id: ", obj_id, first_part),
 concat(first_part, ", prop_name: keyname, value: production-key}", action)

Policy validation engine checks the predeploy_modify rule.
And the Congress engine evaluates the rules referenced inside this rule.

Note

The production-key key pair must already exist, though you can use
any other existing key pair.

	Deploy the environment.

Instances within the environment are deployed with the specified key pair.

See also

	Creating policy enforcement rules

Murano service broker for Cloud Foundry

Service broker overview

Service broker is a new murano component which implements Cloud Foundry [https://www.cloudfoundry.org/] Service Broker API.

This lets users build ‘hybrid’ infrastructures that are services like databases, message
queues, key/value stores, and so on. This services can be uploaded and deployed with
murano and made available to Cloud Foundry apps on demand. The result is lowered cost,
shorter timetables, and quicker access to required tools — developers can ‘self serve’
by building any required service, then make it instantly available in Cloud Foundry.

Configure service broker

Manual installation

If you use local murano installation, you can configure and run murano service
broker in a few simple steps:

	Change into the murano directory:

cd ~/murano/murano

	Generate the murano service broker config file.
Murano service broker has a common config file for service broker API services.
Using tox, generate a sample configuration file:

tox -e gencfconfig

	Copy the configuration file for further modifications:

cd ~/murano/murano/etc/murano
ln -s murano-cfapi.conf.sample murano-cfapi.conf

	Edit murano-cfapi.conf. Below is an example of the basic
settings you may need to configure.

Note

The example below uses the SQLite database. Edit the [database]
section to use another database.

[DEFAULT]
debug = true
verbose = true

...

[database]
backend = sqlalchemy
connection = sqlite:///murano_cfapi.sqlite

...

[keystone_authtoken]
auth_uri = 'http://%OPENSTACK_HOST_IP%:5000/v3'
auth_host = '%OPENSTACK_HOST_IP%'
auth_port = 5000
auth_protocol = http
admin_tenant_name = %OPENSTACK_ADMIN_TENANT%
admin_user = %OPENSTACK_ADMIN_USER%
admin_password = %OPENSTACK_ADMIN_PASSWORD%

...

[cfapi]
tenant = %TENANT_NAME%
bind_host = %HOST_IP%
bind_port = 8083
auth_url = 'http://%OPENSTACK_HOST_IP%:5000/v3'

Note

The bind_host IP should be in the same network as the
Cloud Foundry instance.

	Create database tables for murano service broker:

cd ~/murano/murano
tox -e venv -- murano-cfapi-db-manage \
 --config-file ./etc/murano/murano-cfapi.conf upgrade

	Launch the murano service broker API in a separate terminal:

cd ~/murano/murano
tox -e venv -- murano-cfapi --config-file ./etc/murano/murano-cfapi.conf

Note

Run the command in a new terminal as the process will be running in
the terminal until you terminate it, therefore, blocking the current
terminal.

Devstack installation

It is really easy to enable service broker in your devstack installation.
You need simply update your local.conf with the following:

[[local|localrc]]
enable_plugin murano git://git.openstack.org/openstack/murano
enable_service murano-cfapi

How to use service broker

After service broker is configured and started you have nothing to do with service
broker from murano side - it is an adapter which is used by Cloud Foundry PaaS.

To access and use murano packages through Cloud Foundry, you need to perform following steps:

	Log in to Cloud Foundry instance via ssh.

ssh -i <key_name> <username>@<hostname>

	Log in to Cloud Foundry itself.

cf login -a https://api.<smthg>.xip.io -u <user_name> -p <password>

	Add murano service broker.

cf create-service-broker <broker_name> <OS_USERNAME> <OS_PASSWORD> http://<service_broker_ip>:8083

	Enable access to murano packages.

cf enable-service-access <service_name>

Warning

By default, access to all services is prohibited.

Note

You can use service-access command to see human-readable list of packages.

	Provision murano service through Cloud Foundry.

cf create-service 'Apache HTTP Server' default MyApacheInstance -c apache.json

{
 "instance": {
 "flavor": "m1.medium",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance"
 },
 "keyname": "nstarodubtsev",
 "assignFloatingIp": "True",
 "name": <name_pattern>,
 "availabilityZone": "nova",
 "image": "1b9ff37e-dff3-4308-be08-9185705dad91"
 },
 "enablePHP": "True"
}

Known issues

	Hard to deploy complex apps [https://bugs.launchpad.net/murano/+bug/1500777]

Useful links

Here is the list of the links for Cloud Foundry documentation which you might need:

	Cloud Foundry development version launcher [https://github.com/yudai/cf_nise_installer]

	How to manage Cloud Foundry service brokers [https://docs.cloudfoundry.org/services/managing-service-brokers.html]

	Cloud Foundry CLI docs [http://docs.cloudfoundry.org/devguide/#cf]

Using Glare as a storage for packages

DevStack installation

	Enable Glare service in DevStack

To enable the Glare service in DevStack, edit the local.conf file:

$ cat local.conf
[[local|localrc]]
enable_service g-glare

	Run DevStack:

$./stack.sh

Result Glare service is installed with DevStack.
You can find logs in g-glare screen session.

	Install the muranoartifact plug-in from murano/contrib

$ cd $DEST/murano/contrib/glance/
$ sudo pip install -e .

	Restart Glare

	Set Glare as packages service in murano-engine. For this,
edit the [engine] section in the murano.conf file.
By default, murano.conf is located in the /etc/murano directory

[engine]

packages_service = glare

	Restart murano-engine

Note

You also can use glance as a value of the
packages_service option for the same behaviour

	Enable Glare in murano-dashboard. For this, modify the following line
in the _50_murano.py file

MURANO_USE_GLARE = True

By default, the _50_murano.py file is located in
$HORIZON_DIR/openstack_dashboard/local/local_settings.d/.

	Restart the apache2 service.
Now murano-dashboard will retrieve packages from Glare.

	Log in to Dashboard and navigate to Applications > Manage > Packages
to view the empty list of packages.
Alternatively, use the murano command.

	Use --murano-packages-service option to specify backend,
used by murano command. Set it to glare for using Glare

Note

You also can use glance as value
of --murano-packages-service option or environment variable
MURANO_PACKAGES_SERVICE for same behaviour

	View list of packages:

$ source {DEVSTACK_SOURCE_DIR}/openrc admin admin
$ murano --murano-packages-service=glare package-list

+----+------+-----+--------+--------+-----------+------+---------+
| ID | Name | FQN | Author | Active | Is Public | Type | Version |
+----+------+-----+--------+--------+-----------+------+---------+
+----+------+-----+--------+--------+-----------+------+---------+

	Importing Core library

$ cd $DEST/murano/meta/io.murano/
$ zip io.murano.zip -r *
$ murano --murano-packages-service=glare package-import \
 --is-public /opt/stack/murano/meta/io.murano/io.murano.zip

Importing package io.murano
+--------------------------------------+--------------+-----------+-----------+--------+-----------+---------+---------+
| ID | Name | FQN | Author | Active | Is Public | Type | Version |
+--------------------------------------+--------------+-----------+-----------+--------+-----------+---------+---------+
| 91a9c78f-f23a-4c82-aeda-14c8cbef096a | Core library | io.murano | murano.io | True | | Library | 0.0.0 |
+--------------------------------------+--------------+-----------+-----------+--------+-----------+---------+---------+

Set up Glare API entrypoint manually

If you do not plan to get Glare service from keystone application catalog,
specify where g-glare service is running.

	Specify Glare URL in murano.conf.It is http://0.0.0.0:9494 by default
and can be changed by setting bind_host and bind_port options in
the glance-glare.conf file.

[glare]

url = http://<GLARE_API_URL>:<GLARE_API_PORT>

	Specify Glare URL in the Dashboard settings file, _50_murano.py :

GLARE_API_URL = 'http://<GLARE_API>:<GLARE_API_PORT>'

	Set the GLARE_URL environment variable for python-muranoclient.
Alternatively, use the --glare-url option in CLI.

$ murano --murano-packages-service=glare --glare-url=http://0.0.0.0:9494 package-list

Troubleshooting

Log location

By default, logs are sent to stdout. Consider how to set up the log files.

Murano API + Engine

To define a file where to store logs, use the log_file option in the
murano.conf file. You can provide an absolute or a relative path.

To enable a detailed log file configuration, set up logging.conf.
The example is provided in etc/murano directory. The log configuration
file location is set with the log_config_append option in the murano
configuration file.

Murano applications

Murano applications have a separate logging handler and a separate file where
all logs from application definitions should be provided. Open the
logging.conf file and check the args: ('applications.log',)
option in the handler_applications section.

Verify that log_config_append is not empty and set to the
logging.conf location.

Issues during configuration

If any issues occur, first of all verify the following:

	All murano components have consistent versions: murano-dashboard and
murano-engine should use the same or compatible python-muranoclient version.
Dependent component versions can be found in requirements.txt file.

	The database is synced with code by running:

murano-db-manage --config-file murano.conf upgrade

Failed to execute `murano-db-manage`

	Make sure the --config-file option is provided.

	Check connection parameter in the provided configuration file. It should
be a connection string [http://docs.sqlalchemy.org/en/rel_0_8/core/engines.html].

	Check that MySQL or PostgreSQL (depending of what you provided in the
connection string) Python modules are installed on the system.

Applications panel is not seen in horizon

	Make sure that the _50_murano.py file is copied to the
openstack-dashboard/local/enabled directory and there is no other file
starting with _50.

	Check that murano data is not inserted twice in the settings file and as a
plugin.

Applications panel can be browsed, but ‘Unable to communicate to murano-api server.’ appears

If you have murano registered in keystone, verify the endpoint URL is valid
and service has application-catalog name. If you do not want to register the
murano service in keystone, just add MURANO_API_URL option to the horizon
local setting.

Issues during deployment

Besides identifying errors from log files, there is another and more flexible
way to browse deployment errors – directly from UI. When the Deploy Failed
status appears, navigate to Environment Components and click
the Latest Deployment Log tab. You can see steps of the deployment
and the one that failed would have red color.

while scanning a simple key in “<string>”, line 32, column 3: ...

There is an error in the YAML file format. Before uploading a package,
validate your file in an online YAML validator like
YAMLint [http://www.yamllint.com/].
Later validation tool [https://blueprints.launchpad.net/murano/+spec/murano-package-verification-tool]
to check package closely while uploading will be added.

NoPackageForClassFound: Package for class io.murano.Environment is not found

Verify that murano core package is uploaded. If not, the content of the
meta/io.murano folder should be zipped and uploaded to Murano.

[keystoneclient.exceptions.AuthorizationFailure]:
Authorization failed: You are not authorized to perform the requested action. (HTTP 403)

The token expires during the deployment. Usually the default standard token
lifetime is one hour. The error occurs frequently as, in most cases, a
deployment takes longer than that or does not start right after a token is
generated.

Workarounds:

	Use trusts. Only possible in the v3 version. Read more in the
official documentation [https://wiki.openstack.org/wiki/Keystone/Trusts]
or here [http://docs.openstack.org/admin-guide-cloud/orchestration-auth-model.html].
Do not forget to check the corresponding heat and murano settings. Trusts
are enabled by default in murano and heat since Kilo release.

In murano, the corresponding configuration option is located in the
engine section:

[engine]

...

Create resources using trust token rather than user's token (boolean
value)
use_trusts = true

If your Keystone runs v2 version, see the solutions below.

	Make logout/login to compose a new token and start the deployment again.
Would not help for long deployment or if the token lifetime is too small.

	Increase the token lifetime in the keystone configuration file.

The murano-agent did not respond within 3600 seconds

	Check transport access to the virtual machine: verify that the router has a
gateway.

	Check the RabbitMQ settings: verify that the agent has valid RabbitMQ
parameters.
Go to the spawned virtual machine and open */etc/murano/agent.conf
on the Linux-based machine or C:\Murano\Agent\agent.conf on the
Windows-based machine. Additionally, you can examine agent logs that by
default are located at /var/log/murano-agent.log The first part of
the log file contains reconnection attempts to the RabbitMQ since the valid
RabbitMQ address and queue have not been obtained yet.

	Verify that the driver option in [oslo_messaging_notifications] group
is set to messagingv2.

murano.engine.system.agent.AgentException

The agent started the execution plan but something went wrong. Examine agent
logs (see the previous paragraph for the logs placement information). Also,
try to manually execute the application scripts.

[exceptions.EnvironmentError]: Unexpected stack state NOT_FOUND or UPDATE_FAILED

An issue with heat stack creation, examine the heat log file. Try to manually
spawn the instance. If the reason of the stack creation fail is no valid
host was found, there might be not enough resources or something is wrong
with the nova-scheduler.

Router could not be created, no external network found

Find the external_network parameter in the networking section of the
murano configuration file and verify that the specified external network does
exist through Web UI or by executing the
openstack network list --external command.

Deployment log in the UI contains incomplete reports

Sometimes logs contain only two messages after the application deployment.
There are no messages provided in applications themselves:

2015-09-21 11:14:58 — Action deploy is scheduled
2015-09-21 11:16:43 — Deployment finished successfully

To fix the issue, set the driver option in the murano.config file
to messagingv2.

Application Developer Guide

	Developing Murano Packages 101

	Execution plan template

	HOT packages

	MuranoPL Reference

	Murano packages

	Murano bundles

	Migrating applications between releases

	Application unit tests

	Cinder volume support

	Multi-region application

	Examples

	Use-cases

	Application development framework

	Application developer’s cookbook

	Garbage collection system in MuranoPL

Developing Murano Packages 101

Murano provides a very powerful and flexible platform to automate the
provisioning, deployment, configuration and lifecycle management of
applications in OpenStack clouds. However, the flexibility comes at cost: to
manage an application with Murano one has to design and develop special
scenarios which will tell Murano how to handle different aspects of application
lifecycle. These scenarios are usually called “Murano Applications” or “Murano
Packages”. It is not hard to build them, but it requires some time to get
familiar with Murano’s DSL to define these scenarios and to learn the common
patterns and best practices. This article provides a basic introductory course
of these aspects and aims to be the starting point for the developers willing
to learn how to develop Murano Application packages with ease.

The course consists of the following parts:

	Part 1: Creating your first Application Package
	Creating package manifest

	Adding a class

	Pack and upload your app

	Deploying your application

	Part 2: Customizing your Application Package
	Adding user input

	Adding user interface

	Simplifying code: namespaces

	Adding more info for the catalog

	Part 3: Creating a Plone CMS application package
	The goal

	Preparation

	Library classes

	Provisioning a VM

	Running a command on the VM

	Loading a script from a resource file

	Configuring OpenStack Security

	Notifying end-user on Plone location

	Completing the Plone class

	Providing a UI definition

	Deploying the package

	Part 4: Refactoring code to use the Application Framework
	Step 1: Add dependency on the App Framework

	Step 2: Get rid of the instance

	Step 3: Change the base classes

	Step 4: Split the deployment logic

	Step 5: Configuring OpenStack security group

	Step 6: Provide the server group instance

	Step 6: Using server group composition

Before you proceed, please ensure that you have an OpenStack cloud
(devstack-based will work just fine) and the latest version of Murano deployed.
This guide assumes that the reader has a basic knowledge of some programming
languages and object-oriented design and is a bit familiar with the scripting
languages used to configure Linux servers. Also it would be beneficial to be
familiar with YAML format: lots of software configuration tools nowadays use
YAML, and Murano is no different.

Part 1: Creating your first Application Package

All tutorials on programming languages start with a “Hello, World” example,
and since Murano provides its own programming language, this guide will start
the same way. Let’s do a “Hello, World” application. It will not do anything
useful yet, but will provide you with an understanding of how things work
in Murano. We will add more logic to the package at later stages. Now let’s
start with the basics:

Creating package manifest

Let’s start with creating an empty Murano Package. All packages consist of
multiple files (two at least) organized into a special structure. So, let’s
create a directory somewhere in our file system and set it as our current
working directory. This directory will contain our package:

$ mkdir HelloWorld
$ cd HelloWorld

The main element of the package is its manifest. It is a description of the
package, telling Murano how to display the package in the catalog. It is
defined in a yaml file called manifest.yaml which should be placed right in
the main package directory. Let’s create this file and open it with any text
editor:

$ vim manifest.yaml

This file may contain a number of sections (we will take a closer look at some
of them later), but the mandatory ones are FullName and Type.

The FullName should be a unique identifier of the package, the name which
Murano uses to distinguish it among other packages in the catalog. It is very
important for this name to be globally unique: if you publish your package and
someone adds it to their catalog, there should be no chances that someone
else’s package has the same name. That’s why it is recommended to give your
packages Full Names based on the domain you (or the company your work for) own.
We recommend using “reversed-domain-name” notation, similar to the one used in
the world of Java development: if the yourdomain.com is the domain name you
own, then you could name your package com.yourdomain.HellWorld. This way
your package name will not duplicate anybody else’s, even if they also named
their package “HelloWorld”, because theirs will begin with a different
domain-specific prefix.

Type may have either of two values: Application or Library.
Application indicates the standard package to deploy an application with
Murano, while a Library is bundle of reusable scenarios which may be used
by other packages. For now we just need a single standalone app, so let’s
choose an Application type.

Enter these values and save the file. You should have something like this:

FullName: com.yourdomain.HelloWorld
Type: Application

This is the minimum required to start. We’ll add more manifest data later.

Adding a class

While manifests describe Murano packages in the catalog, the actual logic of
packages is put into classes, which are plain YAML files placed into the
Classes directory of the application package. So, let’s create a directory
to store the logic of our application, then create and edit the file to contain
the first class of the package.

$ mkdir Classes
$ vim Classes/HelloWorld.yaml

Murano classes follow standard patterns of object-oriented programming: they
define the types of the objects which may be instantiated by Murano. The types
are composed of properties, defining the data structure of objects, and
methods, containing the logic that defines the way in which Murano executes
the former. The types may be extended: the extended class contains all the
methods and properties of the class it extends, or it may override some of
them.

Let’s type in the following YAML to create our first class:

	1
2
3
4
5
6
7
8
9

	Name: com.yourdomain.HelloWorld

Extends: io.murano.Application

Methods:
 deploy:
 Body:
 - $reporter: $this.find('io.murano.Environment').reporter
 - $reporter.report($this, "Hello, World!")

Let’s walk through this code line by line and see what this code does.
The first line is pretty obvious: it states the name of our class,
com.yourdomain.HelloWorld. Note that this name matches the name of the
package - that’s intentional. Although it is not mandatory, it is strongly
recommended to give the main class of your application package the same name as
the package itself.

Then, there is an Extends directive. It says that our class extends (or
inherits) another class, called io.murano.Application. That is the base
class for all classes which should deploy Applications in Murano. As many other
classes it is shipped with Murano itself, thus its name starts with
io.murano. prefix: murano.io domain is controlled by the Murano development
team and no one else should create packages or classes having names in that
namespace.

Note that Extends directive may contain not only a single value, but a
list. In that case the class we create will inherit multiple base classes.
Yes, Murano has multiple inheritance, yay!

Now, the Methods block contains all the logic encapsulated in our class. In
this example there is just one method, called deploy. This method is
defined in the base class we’ve just inherited - the io.murano.Application,
so here we override it. Body block of the method contains the
implementation, the actual logic of the method. It’s a list of instructions
(note the dash-prefixed lines - that’s how YAML defines lists), each executed
one by one.

There are two instruction statements here. The first one declares a variable
named $reporter (note the $ character: all the words prefixed with it
are variables in Murano language) and assigns it a value. Unlike other
languages Murano uses colon (:) as an assignment operator: this makes it
convenient to express Murano statements as regular YAML mappings.
The expression to the right of the colon is executed and the result value is
assigned to a variable to the left of the colon.

Let’s take a closer look at the right-hand side of the expression in the first
statement:

- $reporter: $this.find('io.murano.Environment').reporter

It takes a value of a special variable called $this (which always contains
a reference to the current object, i.e. the instance of our class for which the
method was called; it is same as self in python or this in Java) and
calls a method named find on it with a string parameter equal
to ‘io.murano.Environment’; from the call result it takes a “reporter”
attribute; this value is assigned to the variable in the left-hand side of the
expression.

The meaning of this code is simple: it finds the object of class
io.murano.Environment which owns the current application and returns its
“reporter” object. This io.murano.Environment is a special object which
groups multiple deployed applications. When the end-user interacts with Murano
they create these Environments and place applications into them. So, every
Application is able to get a reference to this object by calling find
method like we just did. Meanwhile, the io.murano.Environment class has
various methods to interact with the “outer world”, for example to report
various messages to the end-user via the deployment log: this is done by the
“reporter” property of that class.

So, our first statement just retrieved that reporter. The second one uses it to
display a message to a user: it calls a method “report”, passes the reference
to a reporting object and a message as the arguments of the method:

- $reporter.report($this, "Hello, World!")

Note that the second statement is not a YAML-mapping: it does not have a colon
inside. That’s because this statement just makes a method call, it does not
need to remember the result.

That’s it: we’ve just made a class which greets the user with a traditional
“Hello, World!” message. Now we need to include this class into the package we
are creating. Although it is placed within a Classes subdirectory of the
package, it still needs to be explicitly added to the package. To do that, add
a Classes section to your manifest.yaml file. This should be a YAML
mapping, having class names as keys and relative paths of files within the
Classes directory as the values. So, for our example class it should look
like this:

Classes:
 com.yourdomain.HelloWorld: HelloWorld.yaml

Paste this block anywhere in the manifest.yaml

Pack and upload your app

Our application is ready. It’s very simplistic and lacks many features required
for real-world applications, but it already can be deployed into Murano and run
there.
To do that we need to pack it first. We use good old zip for it.
That’s it: just zip everything inside your package directory into a zip
archive, and you’ll get a ready-to-use Murano package:

$ zip -r hello_world.zip *

This will add all the contents of our package directory to a zip archive called
hello_world.zip. Do not forget the -r argument to include the files in
subdirectories (the class file in our case).

Now, let’s upload the package to murano. Ensure that your system has a
murano-client installed and your OpenStack cloud credentials are exported as
environmnet variables (if not, sourcing an openrc file, downloadable from
your horizon dashboard will do the latter). Then execute the following command:

$ murano package-import ./hello_world.zip
Importing package com.yourdomain.HelloWorld
+----------------------------------+---------------------------+---------------------------+-----------+--------+-----------+-------------+---------+
| ID | Name | FQN | Author | Active | Is Public | Type | Version |
+----------------------------------+---------------------------+---------------------------+-----------+--------+-----------+-------------+---------+
| 251a409645d1444aa1ead8eaac451a1d | com.yourdomain.HelloWorld | com.yourdomain.HelloWorld | OpenStack | True | | Application | |
+----------------------------------+---------------------------+---------------------------+-----------+--------+-----------+-------------+---------+

As you can see from the output, the package has been uploaded to Murano catalog
and is now available there. Let’s now deploy it.

Deploying your application

To deploy an application with Murano one needs to create an Environment and
add configured instances of your applications into it. It may be done either
with the help of user interface (but that requires some extra effort from
package developer) or by providing an explicit JSON, describing the exact
application instance and its configuration. Let’s do the latter option for now.

First, let’s create a json snippet for our application. Since the app is very
basic, the snippet is simple as well:

[
 {
 "op": "add",
 "path": "/-",
 "value": {
 "?": {
 "name": "Demo",
 "type": "com.yourdomain.HelloWorld",
 "id": "42"
 }
 }
 }
]

This json follows a standard json-patch notation, i.e. it defines a number of
operations to edit a large json document. This particular one adds (note the
value of op key) an object described in the value of the json to the
root (note the path equal to /- - that’s root) of our environment.
The object we add has the type of com.yourdomain.HelloWorld - that’s the
class we just created two steps ago. Other keys in this json parameterize the
object we create: they add a name and an id to the object. Id is mandatory,
name is optional. Note that since the id, name and type are the system
properties of our object, they are defined in a special section of the json -
the so-called ?-header. Non-system properties, if they existed, would be
defined at a top-level of the object. We’ll add them in a next chapter to see
how they work.

For now, save this JSON to some local file (say, input.json) and let’s
finally deploy the thing.

Execute the following sequence of commands:

$ murano environment-create TestHello
+----------------------------------+-----------+--------+---------------------+---------------------+
| ID | Name | Status | Created | Updated |
+----------------------------------+-----------+--------+---------------------+---------------------+
| 34bf673a26a8439d906827dea328c99c | TestHello | ready | 2016-10-04T13:19:12 | 2016-10-04T13:19:12 |
+----------------------------------+-----------+--------+---------------------+---------------------+

$ murano environment-session-create 34bf673a26a8439d906827dea328c99c
Created new session:
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| id | 6d4a8fa2a5f4484fbc07740ef3ab60dd |
+----------+----------------------------------+

$ murano environment-apps-edit --session-id 6d4a8fa2a5f4484fbc07740ef3ab60dd 34bf673a26a8439d906827dea328c99c ./input.json

This first command creates a murano environment named TestHello. Note the
id of the created environment - we use it to reference it in subsequent
operations.

The second command creates a “configuration session” for this environment.
Configuration sessions allow one to edit environments in transactional isolated
manner. Note the id of the created sessions: all subsequent calls to modify
or deploy the environment use both ids of environment and session.

The third command applies the json-patch we’ve created before to our
environment within the configuration session we created.

Now, let’s deploy the changes we made:

$ murano environment-deploy --session-id 6d4a8fa2a5f4484fbc07740ef3ab60dd 34bf673a26a8439d906827dea328c99c
+------------------+---+
| Property | Value |
+------------------+---+
acquired_by	7b0fe7c67ede443da9840adb2d518d5c
created	2016-10-04T13:39:34
description_text	
id	34bf673a26a8439d906827dea328c99c
name	TestHello
services	[
	{
	"?": {
	"name": "Demo",
	"status": "deploying",
	"type": "com.yourdomain.HelloWorld",
	"id": "42"
	}
	}
]
status	deploying
tenant_id	60b7b5f7d4e64ff0b1c5f047d694d7ca
updated	2016-10-04T13:39:34
version	0
+------------------+---+

This will deploy the environment. You may check for its status by executing
the following command:

$ murano environment-show 34bf673a26a8439d906827dea328c99c
+------------------+---+
| Property | Value |
+------------------+---+
acquired_by	None
created	2016-10-04T13:39:34
description_text	
id	34bf673a26a8439d906827dea328c99c
name	TestHello
services	[
	{
	"?": {
	"status": "ready",
	"name": "Demo",
	"type": "com.yourdomain.HelloWorld/0.0.0@com.yourdomain.HelloWorld",
	"_actions": {},
	"id": "42",
	"metadata": null
	}
	}
]
status	ready
tenant_id	60b7b5f7d4e64ff0b1c5f047d694d7ca
updated	2016-10-04T13:40:29
version	1
+------------------+---+

As you can see, the status of the Environment has changed to ready: it
means that the application has been deployed. Open Murano Dashboard, navigate
to Environment list and browse the contents of the TestHello environment
there.
You’ll see that the ‘Last Operation’ column near the “Demo” component says
“Hello, World!” - that’s the reporting made by our application:

[image: ../../_images/hello-world-screen-1.png]
This concludes the first part of our course. We’ve created a Murano Application
Package, added a manifest describing its contents, written a class which
reports a “Hello, World” message, packed all of these into a package archive
and uploaded it to Murano Catalog and finally deployed an Environment with this
application added.

In the next part we will learn how to improve this application in various
aspects, both from users’ and developers’ perspectives.

Part 2: Customizing your Application Package

We’ve built a classic “Hello, World” application during the first part of
this tutorial, now let’s play a little with it and customize it for better
user and developer experience - while learning some more Murano features,
of course.

Adding user input

Most deployment scenarios for cloud applications require user input. It may
be various options which should be applied in software configuration files,
passwords for default administrator’s accounts, IP addresses of external
services to register with and so on. Murano Application Packages may define
the user inputs they expect, prompt the end-users to pass the values as these
inputs, so that they may utilize these values during application lifecycle
workflows.

In Murano user input is defined for each class as input properties.
Properties are object-level variables of the class, they may be of different
kinds, and the input properties are the ones which are expected to contain
user input. See Properties for details on other kinds of them.

To define properties of the class you should add a Properties block
somewhere in the YAML file of that class.

Note

Usually it is better to place this block after the Name and Extends
blocks but before the Methods block. Following this suggestion will
improve the overall readability of your code.

The Properties block should contain a YAML dictionary, mapping the names of
the properties to their descriptions. These descriptions may specify the kind
of properties, the restrictions on the type and value of the property
(so-called contracts), provide default value for the property and so on.

Let’s add some user input to our “Hello, World” application. Let’s ask the end
user to provide their name, so the application will greet the user instead of
the whole world. To do that, we need to edit our com.yourdomain.HelloWorld
class to look the following way:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	Name: com.yourdomain.HelloWorld

Extends: io.murano.Application

Properties:
 username:
 Usage: In
 Contract: $.string().notNull()

Methods:
 deploy:
 Body:
 - $reporter: $this.find('io.murano.Environment').reporter
 - $reporter.report($this, "Hello, World!")

On line 6 we declare a property named username, on line 7 we specify that
it is an input property, and on line 8 we provide a contract, i.e. a
restriction on the value. This particular one states that the property’s value
should be a string and should not be null (i.e. should be provided by the
user).

Note

Although there are a total of 7 different kinds of properties, it turns
out that the input ones are the most common. So, for input properties you
may omit the Usage part - all the properties without an explicit usage
are considered to be input properties.

Once the property is declared within the Properties block, you may access
it in the code of the class methods. Since the properties are object-level
variables they may be accessed by calling a $this variable (which is a
reference to a current instance of your class) followed by a dot and a property
name. So, our username property may be accessed as $this.username.

Let’s modify the deploy method of our class to make use of the property to
greet the user by name:

Methods:
 deploy:
 Body:
 - $reporter: $this.find('io.murano.Environment').reporter
 - $reporter.report($this, "Hello, " + $this.username + "!")

OK, let’s try it. Save the file and archive your package directory again, then
re-import your zip-file to the Murano Catalog as a package.
You’ll probably get a warning, since the package with the same name already
exists in the catalog (we imported it there in the previous part of the
tutorial), so murano CLI will ask you if you want to update it. In production
it is better to make a newer version of our application and thus to have both
in the catalog, but for now let’s just overwrite the old package with the new
one.

But you cannot deploy it with the old json input we used in the previous part:
since the property’s contract has that .notNull() part it means that the
input should contain the value for the property. If you attempt to deploy an
application without this value, you’ll get an error.

So, let’s edit the input.json file we created in the previous part and add
the value of the property to the input:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	[
 {
 "op": "add",
 "path": "/-",
 "value": {
 "?": {
 "name": "Demo",
 "type": "com.yourdomain.HelloWorld",
 "id": "42"
 },
 "username": "Alice"
 }
 }
]

Save the json file and repeat the steps from the previous part to create an
environment, open a configuration session, add an application and deploy it.
Now in the ‘Last Operation’ of Murano Dashboard you will see the updated
reporting message, containing the username:

[image: ../../_images/hello-world-screen-2.png]

Adding user interface

As you can see in all the examples above, deploying applications via Murano
CLI is quite a cumbersome process: the user has to create environments and
sessions and provide the appropriate json-based input for the application.

This is inconvenient for a real user, of course. The CLI is intended to be used
by various external automation systems which interact with Murano via scripts,
but the human users will use Murano Dashboard which simplifies all those
actions and provides a nice interface for them.

Murano Dashboard provides a nice interface to create and deploy environments
and manages sessions transparently for the end users, but when it comes to the
generation of input JSON it can’t do it out of the box: it needs some hints
from the package developer. By having hints, Murano Dashboard will be able to
generate nicely looking wizard-like dialogs to configure applications and add
them to an environment. In this section we’ll learn how to create these UI
hints.

The UI hints (also called UI definitions) should be defined in a separate
YAML file (yeah, YAML again) in your application package. The file should be
named ui.yaml and placed in a special directory of your package called
UI.

The main section which is mandatory for all the UI definitions is called
Application: it defines the object structure which should be passed as the
input to Murano. That’s it: it is equivalent to the JSON input.json we were
creating before. The data structure remains the same: ?-header is for system
properties and all other properties belong inside the top level of the object.

The Application section for our modified “Hello, World” application should
look like this:

	1
2
3
4

	Application:
 ?:
 type: com.yourdomain.HelloWorld
 username: Alice

This input is almost the same as the input.json we used last time, except
that the data is expressed in a different format. However, there are several
important differences: there are not JSON-Patch related keywords (“op”, “path”
and “value”) - that’s because Murano Dashboard will generate them
automatically.

Same is true for the missing id and name from the ?-header of the
object: the dashboard will generate the id on its own and ask the end-user for
the name, and then will insert both into the structure it sends to Murano.

However, there is one problem in the example above: it has the username
hardcoded to be Alice. Of course we do not want the user input to be hardcoded:
it won’t be an input then. So, let’s define a user interface which will ask the
end user for the actual value of this parameter.

Since Murano Dashboard works like a step-by-step wizard, we need to define at
least one wizard step (so-called form) and place a single text-box control
into it, so the end-user will be able to enter his/her name there.

These steps are defined in the Forms section of our ui definition file.
This section should contain a list of key-value pairs. Keys are the identifiers
of the forms, while values should define a list of field objects. Each field
may define a name, a type, a description, a requirement indicator and some
other attributes intended for advanced usage.

For our example we need a single step with a single text field. The Forms
section should look like this:

	1
2
3
4
5
6
7

	Forms:
 - step1:
 fields:
 - name: username
 type: string
 description: Username of the user to say 'hello' to
 required: true

This defines the needed textbox control in the ui. Finally, we need to bind
the value user puts into that textbox to the appropriate position in our
Application section. To do that we replace the hardcoded value with an
expression of form $.<formId>.<fieldName>. In our case this will be
$step1.username.

So, our final UI definition will look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	Application:
 ?:
 type: com.yourdomain.HelloWorld
 username: $.step1.username

Forms:
 - step1:
 fields:
 - name: username
 type: string
 description: Username of the user to say 'hello' to
 required: true

Save this code into your UI/ui.yaml file and then re-zip your package
directory and import the resulting archive to Murano Catalog again.

Now, let’s deploy this application using Murano Dashboard.

Open Murano Dashboard with your browser, navigate to
“Applications/Catalog/Environments” panel, click the “Create Environment”
button, enter the name for your environment and click “Create”. You’ll be
taken to the contents of your environment: you’ll see that it is empty, but on
top of the screen there is a list of components you may add to it. If your
Murano Catalog was empty when you started this tutorial, this list will
contain just one item: your “Hello, World” application. The screen should look
like this:

[image: ../../_images/new-env-1.png]
Drag-n-drop your “com.yourdomain.HelloWorld” application from the list on top
of the screen to the “Drop components here” panel beneath it. You’ll see a
dialog, prompting you to enter a username:

[image: ../../_images/configure-step1.png]
Enter the name and click “Next”. Although you’ve configured just one step of
the wizard, the actual interface will consist of two: the dashboard always adds
a final step to prompt the user to enter the name of the application instance
within the environment:

[image: ../../_images/configure-step2.png]
When you click “Create” button an instance of your application will be added to
the environment, you’ll see it in the list of components:

[image: ../../_images/new-env-2.png]
So, now you may click the “Deploy this Environment” button and the application
will greet the user with the name you’ve entered.

[image: ../../_images/new-env-3.png]

Simplifying code: namespaces

Now that we’ve learned how to simplify the user’s life by adding a UI
definition, let’s simplify the developer’s life a bit.

When you were working with Murano classes in the previous part you probably
noticed that the long class names with all those domain-name-based segments
were hard to write and that it was easy to make a mistake:

	1
2
3
4
5
6
7
8
9

	Name: com.yourdomain.HelloWorld

Extends: io.murano.Application

Methods:
 deploy:
 Body:
 - $reporter: $this.find('io.murano.Environment').reporter
 - $reporter.report($this, "Hello, World!")

To simplify the code we may use the concept of namespaces and short names.
All but last segments of a long class name are namespaces, while the last
segment is a short name of a class. In our example com.yourdomain is a
namespace while the HelloWorld is a short name.

Short names have to be unique only within their namespace, so they tend to be
expressive, short and human readable, while the namespaces are globally unique
and thus are usually long and too detailed.

Murano provides a capability to abbreviate long namespaces with a short alias.
Unlike namespaces, aliases don’t need to be globally unique: they have
to be unique only within a single file which uses them. So, they may be very
short. So, in your file you may abbreviate your com.yourdomain namespace
as my, and standard Murano’s io.murano as std. Then instead of a
long class name you may write a namespace alias followed by a colon character
and then a short name, e.g. my:HelloWorld or std:Application. This
becomes very helpful when you have lots of class names in your code.

To use this feature, declare a special section called Namespaces in your
class file. Inside that section provide a mapping of namespace aliases to full
namespaces, like this:

Namespaces:
 my: com.yourdomain
 std: io.murano

Note

Since namespaces are often used in all other sections of files it is
considered good practice to declare this section at a very top of your
class file.

Quite often there is a namespace which is used much more often than others in a
given file. In this case it would be beneficial to declare this namespace as a
default namespace. Default namespace does not need a prefix at all: you just
type short name of the class and Murano will interpret it as being in your
default namespace. Use ‘=’ character to declare the default namespace in your
namespaces block:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	Namespaces:
 =: com.yourdomain
 std: io.murano

Name: HelloWorld

Extends: std:Application

Methods:
 deploy:
 Body:
 - $reporter: $this.find(std:Environment).reporter
 - $reporter.report($this, "Hello, World!")

Notice that Name definition at line 5 uses the default namespace: the
HelloWorld is not prefixed with any namespaces, but is properly resolved
to com.yourdomain.HelloWorld because of the default namespace declaration
at line 2. Also, because Murano recognizes the ns:Class syntax there is
no need to enclose std:Environment in quote marks, though it will also
work.

Adding more info for the catalog

As you could see while browsing Murano Catalog your application entry in it is
not particularly informative: the user can’t get any description about your
app, and the long domain-based name is not very user-friendly aither.

This can easily be improved. The manifest.yaml which we wrote in the first
part contained only mandatory fields. This is how it should look by now:

	1
2
3
4

	FullName: com.yourdomain.HelloWorld
Type: Application
Classes:
 com.yourdomain.HelloWorld: HelloWorld.yaml

Let’s add more fields here.

First, you can add a Name attribute. Unlike FullName, it is not a
unique identifier of the package. But, if specified, it overrides the name of
the package that is displayed in the catalog.

Then there is a Description field. This is a multi-line text attribute,
providing detailed info about your package.

Then an Author field: here you can put your name or the name of your
company, so it will be displayed in catalog as the name of the package
developer. If this field is omitted, the catalog will consider the package to
be made by “OpenStack”, so don’t forget this field if you care about your
copyright.

When you add these fields your manifest may look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	FullName: com.yourdomain.HelloWorld
Type: Application
Name: 'Hello, World'
Description: |
 A package which demonstrates
 development for Murano
 by greeting the user.
Author: John Doe
Classes:
 com.yourdomain.HelloWorld: HelloWorld.yaml

You may also add an icon to be displayed for your application. To do that just
place a logo.png file with an appropriate image into the root folder of
your package.

Zip the package directory and re-upload the file to the catalog. Then use
Murano Dashboard and navigate to Applications/Catalog/Browse panel. You’ll see
that your app gets a logo, a more appropriate name and a description:

[image: ../../_images/hello-world-desc.png]
So, here we’ve learned how to improve both the user’s and developer’s
experience with developing Murano application packages. That was all we could
do with the oversimplistic “Hello World” app. Let’s move forward and touch
some real-life applications.

Part 3: Creating a Plone CMS application package

If you’ve completed “Hello, World” scenarios in the previous parts and are
ready for some serious tasks, we’ve got a good example here.

Let’s automate the deployment of some real application. We’ve chosen a “Plone
CMS” for this purpose. Plone is a simple, but powerful and flexible Content
Management System which can efficiently run on cloud. Its deployment scenario
can be very simple for demo cases and can become really complicated for
production-grade usage. So it’s a good playground: in this part we’ll create a
Murano application to address the simplest scenario, then we will gradually add
more features of production-grade deployments.

Note

To learn more about Plone, its features, capabilities and deployment
scenarios you may visit the Official website of Plone Foundation [http://www.plone.org/].

The goal

Simplest deployment of Plone CMS requires a single server, or, in the case of
OpenStack, a Virtual Machine, to run on. Then a software should be downloaded
and configured to run on that server.

So, as a bare minimum our Plone application package for Murano should automate
the following steps:

	Provision a virtual machine in OpenStack (VM);

	Configure ths VM’s network connectivity and security;

	Download a distribution of Plone from Internet to the virtual machine;

	Install the distribution and configure some of its parameters with user
input.

Preparation

First let’s revisit what we’ve learned in previous parts and create a new
application package with its manifest and create a class file to contain the
logic of your app.

Create a new directory for a package, call it PloneApp. Create a
manifest.yaml file as described in part 1 of this tutorial in the root of
the package and fill it with data: name your package com.yourdomain.Plone,
set its type to Application, give it a display name of “Plone CMS” and put
your name as the author of the package:

	1
2
3
4
5

	FullName: com.yourdomain.Plone
Name: Plone CMS
Description: Simple Plone Deployment
Type: Application
Author: John Doe

Then create a Classes sub directory inside your package directory and
create a plone.yaml there. This will be your application class.

At the top of this file declare a Namespace section: this will simplify the
code and save time on typing long class names. Make your namespace
(com.yourdomain) a default namespace of the file, also include the standard
namespace for Murano applications - io.murano, alias it as std.

Don’t forget to include the Name of your class. Since you’ve declared a
default namespace for a file you can name your class without a need to type its
long part, just using the shortname.

Also include the Extends section: same as in our “Hello, World” example
this application will inherit the io.murano.Application class, but since
we’ve aliased this namespace as well, it may be shortened to
std:Application

By now your class file should look like this:

Namespaces:
 =: com.yourdomain
 std: io.murano

Name: Plone

Extends: std:Application

We’ll add the actual logic in the next section. Now, save the file and include
it into the Classes section of your manifest.yaml, which should now look
like this:

	1
2
3
4
5
6
7

	FullName: com.yourdomain.Plone
Name: Plone CMS
Description: Simple Plone Deployment
Type: Application
Author: John Doe
Classes:
 com.yourdomain.Plone: plone.yaml

You are all set and ready to go. Let’s add the actual deployment logic.

Library classes

Murano comes bundled with a so-called “Murano Core Library” - a Murano Package
containing the classes to automate different scenarios of interaction with
other entities such as OpenStack services or virtual machines. They follow
object-oriented design: for example, there is a Murano class called
Instance which represents an OpenStack virtual machine: if you create an
object of this class and execute a method called deploy for it Murano will
do all the needed system calls to OpenStack Services to orchestrate the
provisioning of a virtual machine and its networking configuration. Then this
object will contain information about the state and configuration of the VM,
such as its hostname, ip addresses etc. After the VM is provisioned you can use
its object to send the configuration scripts to the VM to install and configure
software for your application.

Other OpenStack resources such as Volumes, Networks, Ports, Routers etc also
have their corresponding classes in the core library.

Provisioning a VM

When creating your application package you can compose your application out
of the components of core library. For example for an application which
should run on a VM you can define an input property called instance and
restrict the value type of this property to the aforementioned Instance
class with a contract.

Let’s do that in the plone.yaml class file you’ve created.
First, add a new namespace alias to your Namespaces section:
shorten io.murano.resources as res. This namespace of the core
library contains all the resource classes, including the
io.murano.resources.Instance which we need to define the virtual machine:

Namespaces:
 =: com.yourdomain
 std: io.murano
 res: io.murano.resources

Now, let’s add an input property to your class:

	1
2
3
4

	Properties:
 instance:
 Usage: In
 Contract: $.class(res:Instance)

Notice the contract at line 4: it limits the values of this property to the
objects of class io.murano.resources.Instance or its subclasses.

This defines that your application needs a virtual machine. Now let’s ensure
that it is provisioned - or provision it otherwise. Add a deploy method to
your application class and call instance’s deploy method from it:

	1
2
3
4

	Methods:
 deploy:
 Body:
 - $this.instance.deploy()

That’s very simple: you just access the instance property of your current
object and run a method deploy for it. The core library defines this method
of the Instance class in an idempotent manner: you may call it as many
times as you want: the first call will actually provision the virtual machine
in the cloud, while all the subsequent calls will no nothing, thus you may
always call this method to ensure that the VM was properly provisioned. It’s
important since we define it as an input property: theoretically a user can
pass an already-provisioned VM object as input, but you need to be sure.
Always calling the deploy method is the best practice to follow.

Running a command on the VM

Once the VM has been provisioned you may execute various kinds of software
configuration scenarios on it to install and configure the actual application
on the VM. Murano supports different types of software configuration tools to
be run on a VM, but the simplest and the most common type is just a shell
script.

To run a shell script on a virtual machine you may use a static method
runCommand of class io.murano.configuration.Linux. Since this method is
static you do not need to create any objects of its class: you can just do
something like:

- type('io.murano.configuration.Linux').runCommand($server.agent, 'sudo apt-get update')

or, if we declare another namespace prefix

Namespaces:
 ...
 conf: io.murano.configuration

this may be shortened to

- conf:Linux.runCommand($server.agent, 'sudo apt-get update')

In this case $server should be a variable containing an object of
io.murano.resources.Instance class, everything you pass as a second
argument (apt get update in the example above) is the shell command to be
executed on a VM. You may pass not just a single line, but a multi-line text:
it will be treated as a shell script.

Note

The shell scripts and commands you send to a VM are executed by a special
software component running on the VM - a murano agent. For the most
popular distributions of Linux (Debian, Ubuntu, Centos, Fedora, etc.) it
automatically gets installed on the VM once it is provisioned, but for other
distribution and non-Linux OSes it has to be manually pre-installed in the
image. See Building Murano Image for details.

Loading a script from a resource file

Passing strings as a second argument of a runCommand method is convenient
for short commands like the apt-get update shown in an example above.
However for larger scripts it is not that useful. Instead it is preferable
to load a script text from a file and run it. You can do that in Murano.

For example, let’s make a script which downloads, unpacks, installs and
configures Plone CMS on our VM. First, create a directory called Resources
inside your package directory. Then, create a file named install-plone.sh
and put the following script there:

#!/bin/bash

#input parameters

PL_PATH="$1"
PL_PASS="$2"
PL_PORT="$3"

Write log. Redirect stdout & stderr into log file:
exec &> /var/log/runPloneDeploy.log
echo "Update all packages."
sudo apt-get update

Install the operating system software and libraries needed to run Plone:
sudo apt-get -y install python-setuptools python-dev build-essential libssl-dev libxml2-dev libxslt1-dev libbz2-dev libjpeg62-dev

Install optional system packages for the handling of PDF and Office files. Can be omitted:
sudo apt-get -y install libreadline-dev wv poppler-utils

Download the latest Plone unified installer:
wget --no-check-certificate https://launchpad.net/plone/5.0/5.0.4/+download/Plone-5.0.4-UnifiedInstaller.tgz

Unzip the latest Plone unified installer:
tar -xvf Plone-5.0.4-UnifiedInstaller.tgz
cd Plone-5.0.4-UnifiedInstaller

Set the port that Plone will listen to on available network interfaces. Editing "http-address" param in buildout.cfg file:
sed -i "s/^http-address = [0-9]*$/http-address = ${PL_PORT}/" buildout_templates/buildout.cfg

Run the Plone installer in standalone mode
./install.sh --password="${PL_PASS}" --target="${PL_PATH}" standalone

Start Plone
cd "${PL_PATH}/zinstance"
bin/plonectl start

Note

As you can see, this script uses apt to install the prerequisite software
packages, so it expects a Debian-compatible Linux distro as the VM operating
system. This particular script was tested on Ubuntu 14.04. Other distros
may have a different set of preinstalled software and thus require different
additional prerequisites.

The comments in the script give the needed explanation: the script installs all
the prerequisites, downloads a targz archive with a distribution of Plone,
unpacks it, edits the buildout.cfg file to specify the port Plone will
listen at, then runs the installation script which is included in the
distribution. When that script is finished, the Plone daemon is started.

Save the file as Resources/install-plone.sh. Now you may load its contents
into a string variable in your class file. To do that, you need to use another
static method: a string() method of a io.murano.system.Resources class:

- $script: type('io.murano.system.Resources').string('install-plone.sh')

or, with the introduction of another namespace prefix

- $script: sys:Resources.string('install-plone.sh')

But before sending this script to a VM, it needs to be parametrized: as you
can see in the script snippet above, it declares three variables which are
used to set the installation path in the VM’s filesystem, a default
administrator’s password and a listening port. In the script these values are
initialized with stubs $1, $2 and $3, now we need to replace these
stubs with the actual user input. To do that our class needs to define the
appropriate input properties and then do string replacement.

First, let’s define the appropriate input properties in the Properties
block of the class, right after the instance property:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	Properties:
 instance:
 Usage: In
 Contract: $.class(res:Instance)

 installationPath:
 Usage: In
 Contract: $.string().notNull()
 Default: '/opt/plone'

 defaultPassword:
 Usage: In
 Contract: $.string().notNull()

 listeningPort:
 Usage: In
 Contract: $.int().notNull()
 Default: 8080

Now, let’s replace the stub values in that script value we’ve loaded into the
$script variable. This may be done using a replace function:

- $script: $script.replace({"$1" => $this.installationPath,
 "$2" => $this.defaultPassword,
 "$3" => $this.listeningPort})

Finally, the resulting $script variable may be passed as a second argument
of a runCommand method, while the first one should be the instance
property, containing our VM-object:

- conf:Linux.runCommand($this.instance.agent, $script)

Configuring OpenStack Security

By now we’ve got code which provisions a VM and a script which deploys and
configures Plone on it. However, in most OpenStack clouds this is not enough:
usually all incoming traffic to all the VMs is blocked by default, so we need
to configure security group of OpenStack to allow the incoming http calls to
our VM on the port our Plone server listens at.

To do that we need to use a securityGroupManager property of the
Environment class which owns our application. That property contains an
object of type io.murano.system.SecurityGroupManager, which defines a
addGroupIngress method. This method allows us to add a security group rule
to allow incoming traffic of some type through a specific port within a port
range. It accepts a list of YAML objects, each having four keys: FromPort
and ToPort to define the boundaries of the port range, IpProtocol to
define the type of the protocol and External boolean flag to indicate if
the incoming traffic should be be allowed to originate from outside of the
environment (if this flag is false, the traffic will be accepted only from the
VMs deployed by the application in the same Murano environment).

Let’s do this in code:

	1
2
3
4
5
6
7
8
9

	- $environment: $this.find(std:Environment)
- $manager: $environment.securityGroupManager
- $rules:
 - FromPort: $this.listeningPort
 ToPort: $this.listeningPort
 IpProtocol: tcp
 External: true
- $manager.addGroupIngress($rules)
- $environment.stack.push()

It’s quite straightforward, just notice the last line. It is required, because
current implementation of SecurityGroupManager relies on Heat underneath -
it modifies the Heat Stack associated with our environment, but does not
apply the changes to the actual cloud. To apply them the stack needs to be
pushed, i.e. submitted to Heat Orchestration service. The last line does
exactly that.

Notifying end-user on Plone location

When the deployment is completed and our instance of Plone server starts
listening on a provisioned virtual machine, the end user has one last question
to solve: to find out where it is. Of course, the user may use OpenStack
Dashboard to list all the provisioned VMs, find the one which has just been
created and look for its IP address. But that’s inconvenient. It would be much
better if Murano notified the end-user on where to find Plone once it is ready.

We may utilize the same approach we used in the previous parts to say “Hello,
World” - call a report method of reporter attribute of the
Environment class. The tricky part is getting the IP address.

Class io.murano.resources.Instance has an output property called
ipAddresses. Unlike input properties the output ones are not provided by
users but are set by objects themselves while their methods are executed. The
ipAddresses is assigned during the execution of deploy method of the
VM. The value is the list of ip addresses assigned to different interfaces of
the machine. Also, if the assignFloatingIp input property is set to
true, another output property will be set during the execution of
deploy - a floatingIpAddress will contain the floating ip attached to
the VM.

Let’s use this knowledge and build a proper report message:

	1
2
3
4
5
6
7
8

	- $message: 'Plone is up and running at '
- If: $this.instance.assignFloatingIp
 Then:
 - $message: $message + $this.instance.floatingIpAddress
 Else:
 - $message: $message + $this.instance.ipAddresses.first()
- $message: $message + ":" + str($this.listeningPort)
- $environment.reporter.report($this, $message)

Note the usage of If expression: it is similar to other programming
languages, just uses YAML keys to define the “if” and “else” blocks.

This code creates a string variable called $message, initializes it with
the beginning of the message string, then appends either a floating ip address
of the VM (if it’s set) or the first of the regular ips otherwise. Then it
appends a listening port after a colon character - and reports the resulting
message to the user.

Completing the Plone class

We’ve got all the pieces to deploy our Plone application, now let’s combine
them together. Our final class file should look like this:

Namespaces:
 =: com.yourdomain
 std: io.murano
 res: io.murano.resources
 sys: io.murano.system

Name: Plone

Extends: std:Application

Properties:
 instance:
 Usage: In
 Contract: $.class(res:Instance)

 installationPath:
 Usage: In
 Contract: $.string().notNull()
 Default: '/opt/plone'

 defaultPassword:
 Usage: In
 Contract: $.string().notNull()

 listeningPort:
 Usage: In
 Contract: $.int().notNull()
 Default: 8080

Methods:
 deploy:
 Body:
 - $this.instance.deploy()
 - $script: sys:Resources.string('install-plone.sh')
 - $script: $script.replace({
 "$1" => $this.installationPath,
 "$2" => $this.defaultPassword,
 "$3" => $this.listeningPort
 })
 - type('io.murano.configuration.Linux').runCommand($this.instance.agent, $script)
 - $environment: $this.find(std:Environment)
 - $manager: $environment.securityGroupManager
 - $rules:
 - FromPort: $this.listeningPort
 ToPort: $this.listeningPort
 IpProtocol: tcp
 External: true
 - $manager.addGroupIngress($rules)
 - $environment.stack.push()
 - $formatString: 'Plone is up and running at {0}:{1}'
 - If: $this.instance.assignFloatingIp
 Then:
 - $address: $this.instance.floatingIpAddress
 Else:
 - $address: $this.instance.ipAddresses.first()
 - $message: format($formatString, $address, $this.listeningPort)
 - $environment.reporter.report($this, $message)

That’s all, our class is ready.

Providing a UI definition

Last but not least, we need to add a UI definition file to define a template
for the user input and create wizard steps.

This time both are a bit more complicated than they were for the “Hello, World”
app.

First, let’s create the wizard steps. It’s better to decompose the UI into two
steps: the first one will define the properties of a Virtual Machine, and the
second one the configuration properties of the Plone application itself.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	Forms:
 - instanceConfiguration:
 fields:
 - name: hostname
 type: string
 required: true
 - name: image
 type: image
 imageType: linux
 - name: flavor
 type: flavor
 - name: assignFloatingIp
 type: boolean
 - ploneConfiguration:
 fields:
 - name: installationPath
 type: string
 - name: defaultPassword
 type: password
 required: true
 - name: listeningPort
 type: integer

This is familiar to what we had on the previous step, however there are several
new types of fields: while the types integer and boolean are quite
obvious - they will render a numeric up-and-down textbox and checkbox controls
respectively - other field types are more specific.

Field of type image will render a drop-down list allowing you to choose an
image for your VM, and the list of images will contain only the ones having
appropriate metadata associated (the type of metadata is defined by the
imageType attribute: this particular example requires it to be tagged as
“Generic Linux”).

Field of type flavor will render a drop-down list allowing you to choose a
flavor for your VM among the ones registered in Nova.

Field of type password will render a pair of text-boxes in a password
input mode (i.e. hiding all the input with ‘*’-characters). The rendered field
will have appropriate validation: it will ensure that the values entered in
both fields are identical (thus providing a “repeat password” functionality)
and will also enforce password complexity check.

This defines the basic UI, but it is not particularly user friendly: when
MuranoDashboard renders the wizard it will label appropriate controls with the
names of the fields, but they usually don’t look informative and pretty.

So, to improve the user experience you may add additional attributes to field
descriptors here. label attribute allows you to define a custom label to be
rendered next to appropriate control, description allows you to provide a
longer text to be displayed on the form as a description of the control, and,
finally, an initial attribute allows you define the default value to be
entered into the control when it is shown to the end-user.

Modify the Forms section to use these attributes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	Forms:
 - instanceConfiguration:
 fields:
 - name: hostname
 type: string
 label: Host Name
 description: >-
 Enter a hostname for a virtual machine to be created
 initial: plone-vm
 required: true
 - name: image
 type: image
 imageType: linux
 label: Instance image
 description: >-
 Select valid image for the application. Image should already be prepared and
 registered in glance.
 - name: flavor
 type: flavor
 label: Instance flavor
 description: >-
 Select registered in Openstack flavor. Consider that application performance
 depends on this parameter.
 - name: assignFloatingIp
 type: boolean
 label: Assign Floating IP
 description: >-
 Check to assign floating IP automatically
 - ploneConfiguration:
 fields:
 - name: installationPath
 type: string
 label: Installation Path
 initial: '/opt/plone'
 description: >-
 Enter the path on the VM filesystem to deploy Plone into
 - name: defaultPassword
 label: Admin password
 description: Default administrator's password
 type: password
 required: true
 - name: listeningPort
 type: integer
 label: Listening Port
 description: Port to listen at
 initial: 8080

Now, let’s add an Application section to provide templated input for our
app:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	Application:
 ?:
 type: com.yourdomain.Plone
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: $.instanceConfiguration.hostname
 image: $.instanceConfiguration.image
 flavor: $.instanceConfiguration.flavor
 assignFloatingIp: $.instanceConfiguration.assignFloatingIp
 installationPath: $.ploneConfiguration.installationPath
 defaultPassword: $.ploneConfiguration.defaultPassword
 listeningPort: $.ploneConfiguration.listeningPort

Note the instance part here: since our instance input property is not
a scalar value but rather an object, we are placing another object template
inside the appropriate section. Note that the type of this object is not
io.murano.resources.Instance as you could expect based on the property
contract, but a more specific class: LinuxMuranoInstance in the same
namespace. Since this class inherits the former, it matches the contract, but
it provides a more appropriate implementation than the base one.

Let’s combine the two snippets together, we’ll get the final UI definition of
our app:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

	Application:
 ?:
 type: com.yourdomain.Plone
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: $.instanceConfiguration.hostname
 image: $.instanceConfiguration.image
 flavor: $.instanceConfiguration.flavor
 assignFloatingIp: $.instanceConfiguration.assignFloatingIp
 installationPath: $.ploneConfiguration.installationPath
 defaultPassword: $.ploneConfiguration.defaultPassword
 listeningPort: $.ploneConfiguration.listeningPort
Forms:
 - instanceConfiguration:
 fields:
 - name: hostname
 type: string
 label: Host Name
 description: >-
 Enter a hostname for a virtual machine to be created
 initial: 'plone-vm'
 required: true
 - name: image
 type: image
 imageType: linux
 label: Instance image
 description: >-
 Select valid image for the application. Image should already be prepared and
 registered in glance.
 - name: flavor
 type: flavor
 label: Instance flavor
 description: >-
 Select registered in Openstack flavor. Consider that application performance
 depends on this parameter.
 - name: assignFloatingIp
 type: boolean
 label: Assign Floating IP
 description: >-
 Check to assign floating IP automatically
 - ploneConfiguration:
 fields:
 - name: installationPath
 type: string
 label: Installation Path
 initial: '/opt/plone'
 description: >-
 Enter the path on the VM filesystem to deploy Plone into
 - name: defaultPassword
 label: Admin password
 description: Default administrator's password
 type: password
 required: true
 - name: listeningPort
 type: integer
 label: Listening Port
 description: Port to listen at
 initial: 8080

Save this file as a ui.yaml in a UI folder of your package. As a final
touch add a logo to the package - save the image below to the root directory of
your package as logo.png:

[image: ../../_images/plone-logo.png]
The package is ready. Zip it and import to Murano catalog. We are ready to try
it.

Deploying the package

Go to Murano Dashboard, create an environment and add a “Plone CMS” application
to it. You’ll see the nice wizard with all the field labels and descriptions
you’ve added to the ui definition file:

[image: ../../_images/plone-simple-step1.png]
[image: ../../_images/plone-simple-step2.png]
After the app is added to the environment, click the “Deploy this environment”
button. The deployment will take about 10 minutes, depending on the speed of
the VM’s internet connection and the amount of packages to be updated. When it
is over, check the “Last operation” column in the environment’s list of
components near the Plone component. It should contain a message “Plone is up
and running at ...” followed by ip address and port:

[image: ../../_images/plone-ready.png]
Enter this address to the address bar of your browser. You’ll see the default
management interface of Plone:

[image: ../../_images/plone-admin.png]
If you click a “Create a new Plone site” button you’ll be prompted for username
and password. Use admin username and the password which you entered in the
Wizard. See Plone Documentation [http://docs.plone.org] for details on how
to operate Plone.

This concludes this part of the course. The application package we created
demonstrates the basic capabilities of Murano for the deployments of real-world
applications. However, the deployed configuration of Plone is not of
production-grade service: it is just a single VM with all-in-one service
topology, which is not a scalable or fault-tolerant solution.
In the next part we will learn some advanced features which may help to bring
more production-grade capabilities to our package.

Part 4: Refactoring code to use the Application Framework

Up until this point we wrote the Plone application in a manner that was common
to all applications that were written before the application framework was
introduced.

In this last tutorial step we are going to refactor the Plone code in order
to take advantage of the framework.

Application framework was written in order to simplify the application
development and encapsulate common deployment workflows. This gives things
primitives for application scaling and high availability without the need to
develop them over and over again for each application.

When using the frameworks, an application developer only has to inherit the
class that best suits him and provide it only with the code that is specific
to the application, while leaving the rest to the framework.
This typically includes:

	instructions on how to provision the software on each node (server)

	instructions on how to configure the provisioned software

	server group onto which the software should be installed. This may be a
fixed server list, a shared server pool, or a scalable server group that
creates servers using the given instance template, or one of the several
other implementations provided by the framework

The framework is located in a separate library package
io.murano.applications that is shipped with Murano. We are going to use
the apps namespace prefix to refer to this namespace through the code.

Step 1: Add dependency on the App Framework

In order to use one Murano Package from another, the former must be explicitly
specified as a requirement for the latter. This is done by filling the
Require section in the package’s manifest file.

Open the Plone’s manifest.yaml file and append the following lines:

Require:
 io.murano.applications:

Requirements are specified as a mapping from package name to the desired
version of that package (or version range). The missing value indicates
the dependency on the latest 0.*.* version of the package which is exactly
what we need since the current version of the app framework library is 0.

Step 2: Get rid of the instance

Since we are going to have a multi-sever Plone application there won’t be
a single instance belonging to the application. Instead, we are going to
provide it with the server group that abstracts the server management from
the application.

So instead of

Properties:
 instance:
 Contract: $.class(res:Instance)

we are going to have

Properties:
 servers:
 Contract: $.class(apps:ServerGroup).notNull()

Step 3: Change the base classes

Another change that we are going to make to the main application class is
to change its base classes. Regular applications inherit from the
std:Application which only has the method deploy that does all the
work.

Application framework provides us with its own implementation of that class and
method. Instead of one monolithic method that does everything, with the
framework, the application provides only the code needed to provision and
configure the software on each server.

So instead of std:Application class we are going to inherit two of
the framework classes:

Extends:
 - apps:MultiServerApplicationWithScaling
 - apps:OpenStackSecurityConfigurable

The first class tells us that we are going to have an application that runs
on multiple servers. In the following section we are going to split out
deploy method into two smaller methods that are going to be invoked by
the framework to install the software on each of the servers. By inheriting the
apps:MultiServerApplicationWithScaling, the application automatically gets
all the UI buttons to scale it out and in.

The second class is a mix-in class that tells the framework that we are going
to provide the OpenStack-specific security group configuration for the
application.

Step 4: Split the deployment logic

In this step we are going to split the installation into two phases:
provisioning and configuration.

Provisioning is implemented by overriding the onInstallServer method,
which is called every time a new server is added to the server group. In this
method we are going to install the Plone software bits onto the server
(which is provided as a method parameter).

Configuration is done through the onConfigureServer, which is called
upon the first installation on the server, and every time any of the
application settings change, and onCompleteConfiguration which is
executed on each server after everything was configured so that we can
perform post-configuration steps like starting application daemons and
reporting messages to the user.

Thus we are going to split the install-plone.sh script into two scripts:
installPlone.sh and configureServer.sh and execute each one in their
corresponding methods:

onInstallServer:
 Arguments:
 - server:
 Contract: $.class(res:Instance).notNull()
 - serverGroup:
 Contract: $.class(apps:ServerGroup).notNull()
 Body:
 - $file: sys:Resources.string('installPlone.sh').replace({
 "$1" => $this.deploymentPath,
 "$2" => $this.adminPassword
 })
 - conf:Linux.runCommand($server.agent, $file)

onConfigureServer:
 Arguments:
 - server:
 Contract: $.class(res:Instance).notNull()
 - serverGroup:
 Contract: $.class(apps:ServerGroup).notNull()
 Body:
 - $primaryServer: $serverGroup.getServers().first()
 - If: $server = $primaryServer
 Then:
 - $file: sys:Resources.string('configureServer.sh').replace({
 "$1" => $this.deploymentPath,
 "$2" => $primaryServer.ipAddresses[0]
 })
 Else:
 - $file: sys:Resources.string('configureClient.sh').replace({
 "$1" => $this.deploymentPath,
 "$2" => $this.servers.primaryServer.ipAddresses[0],
 "$3" => $this.listeningPort})
 - conf:Linux.runCommand($server.agent, $file)

 onCompleteConfiguration:
 Arguments:
 - servers:
 Contract:
 - $.class(res:Instance).notNull()
 - serverGroup:
 Contract: $.class(apps:ServerGroup).notNull()
 - failedServers:
 Contract:
 - $.class(res:Instance).notNull()
 Body:
 - $startCommand: format('{0}/zeocluster/bin/plonectl start', $this.deploymentPath)
 - $primaryServer: $serverGroup.getServers().first()
 - If: $primaryServer in $servers
 Then:
 - $this.report('Starting DB node')
 - conf:Linux.runCommand($primaryServer.agent, $startCommand)
 - conf:Linux.runCommand($primaryServer.agent, 'sleep 10')

 - $otherServers: $servers.where($!= $primaryServer)
 - If: $otherServers.any()
 Then:
 - $this.report('Starting Client nodes')
 # run command on all other nodes in parallel with pselect
 - $otherServers.pselect(conf:Linux.runCommand($.agent, $startCommand))

 # build an address string with IPs of all our servers
 - $addresses: $serverGroup.getServers().
 select(
 switch($.assignFloatingIp => $.floatingIpAddress,
 true => $.ipAddresses[0])
 + ':' + str($this.listeningPort)
).join(', ')
 - $this.report('Plone listeners are running at ' + str($addresses))

During configuration phase we distinguish the first server in the server group
from the rest of the servers. The first server is going to be the primary
node and treated differently from the others.

Step 5: Configuring OpenStack security group

The last change to the main class is to set up the security group rules.
We are going to do this by overriding the getSecurityRules method
that we inherited from the apps:OpenStackSecurityConfigurable class:

getSecurityRules:
 Body:
 - Return:
 - FromPort: $this.listeningPort
 ToPort: $this.listeningPort
 IpProtocol: tcp
 External: true
 - FromPort: 8100
 ToPort: 8100
 IpProtocol: tcp
 External: false

The code is very similar to that of the old deploy method with the only
difference being that it returns the rules rather than sets them on its own.

Step 6: Provide the server group instance

Do you remember, that previously we replaced the instance property with
servers of type apps:ServerGroup? Since the object is coming from the
UI definition, we must change the latter in order to provide
the class with the apps:ServerReplicationGroup instance rather than
resources:Instance.

To do this we are going to replace the instance property in the
Application template with the following snippet:

servers:
 ?:
 type: io.murano.applications.ServerReplicationGroup
 numItems: $.ploneConfiguration.numNodes
 provider:
 ?:
 type: io.murano.applications.TemplateServerProvider
 template:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage
 assignFloatingIp: $.instanceConfiguration.assignFloatingIP
 serverNamePattern: $.instanceConfiguration.unitNamingPattern

If you take a closer look at the code above you will find out that the
new declaration is very similar to the old one. But now instead of providing
the Instance property values directly, we are providing them as a template
for the TemplateServerProvider server provider. ServerReplicationGroup
is going to use the provider each time it requires another server. In turn,
the provider is going to use the familiar template for the new instances.

Besides the instance template we also specify the initial number of Plone
nodes using the numItems property and the name pattern for the servers.
Thus we must also add it to the list of our controls:

Forms:
 - instanceConfiguration:
 fields:
 ...
 - name: unitNamingPattern
 type: string
 label: Instance Naming Pattern
 required: false
 maxLength: 64
 initial: 'plone-{0}'
 description: >-
 Specify a string, that will be used in instance hostname.
 Just A-Z, a-z, 0-9, dash and underline are allowed.

 - ploneConfiguration:
 fields:
 ...
 - name: numNodes
 type: integer
 label: Initial number of Client Nodes
 initial: 1
 minValue: 1
 required: true
 description: >-
 Select the initial number of Plone Client Nodes

Step 6: Using server group composition

By this step we should already have a working Plone application. But let’s
go one step further and enhance our sample application.

Since we are running the database on the first server group server only,
we might want it to have different properties. For example we might want
to give it a bigger flavor or just a special name. This is a perfect
opportunity for us to demonstrate how to construct complex server groups.
All we need to do is to just use another implementation of
apps:ServerGroup. Instead of apps:ServerReplicationGroup we are going
to use the apps:CompositeServerGroup class, which allows us to compose
several server groups together. One of them is going to be a single-server
server group consisting of our primary server, and the second is going to be
the scalable server group that we used to create in the previous step.

So again, we change the Application section of our UI definition file
with even a more advanced servers property definition:

servers:
 ?:
 type: io.murano.applications.CompositeServerGroup
 serverGroups:
 - ?:
 type: io.murano.applications.SingleServerGroup
 server:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: format($.instanceConfiguration.unitNamingPattern, 'db')
 image: $.instanceConfiguration.image
 flavor: $.instanceConfiguration.flavor
 assignFloatingIp: $.instanceConfiguration.assignFloatingIp
 - ?:
 type: io.murano.applications.ServerReplicationGroup
 numItems: $.ploneConfiguration.numNodes
 provider:
 ?:
 type: io.murano.applications.TemplateServerProvider
 template:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage
 assignFloatingIp: $.instanceConfiguration.assignFloatingIP
 serverNamePattern: $.instanceConfiguration.unitNamingPattern

Here the instance definition for the SingleServerGroup (our primary
server) differs from the servers in the ServerReplicationGroup by its name
only. However the same technique might be used to customize other properties
as well as to create even more sophisticated server group topologies. For
example, we could implement region bursting by composing several scalable
server groups that allocate servers in different regions. And all of that
without making any changes to the application code itself!

Execution plan template

An execution plan template is a set of metadata that describes
the installation process of an application on a virtual
machine. It is a minimal executable unit that can be
triggered in Murano workflows and is understandable to
the Murano agent, which is responsible for receiving,
correctness verification and execution of the statements
included in the template.

The execution plan template is able to trigger any type of script
that executes commands and installs application components
as the result. Each script included in the execution
plan template may consist of a single file or a set of interrelated
files. A single script can be reused across several execution
plans.

This section is devoted to the structure and syntax of an execution
plan template. For different configurations of templates, please
refer to the Examples section.

Template sections

The table below contains the list of the sections that can be
included in the execution plan template with the description of
their meaning and the default attributes which are used by the
agent if any of the listed parameters is not specified.

	Section name
	Meaning and default value

	FormatVersion
	a version of the execution plan template syntax
format. Default is 1.0.0. Optional

	Name
	a human-readable name for the execution plan to
be used for logging. Optional

	Version
	a version of the execution plan itself, is used
for logging and tracing. Each time the content
of the template content changes (main script,
attached scripts, properties, etc.), the version
value should be incremented.
This is in contrast with FormatVersion,
which is used to distinguish the execution plan
format.
The default value is 0.0.0. Optional

	Body
	string that represents the Python statement and is
executed by the murano-agent. Scripts defined in
the Scripts section are invoked from here.
Required

	Parameters
	a dictionary of the String->JsonObject type
that maps parameter names to their values.
Optional.

	Scripts
	a dictionary that maps script names to their
script definitions. Required

FormatVersion property

FormatVersion is a property that all other depend on.
That is why it is very important to specify it correctly.

FormatVersion 1.0.0 (default) is still used by Windows murano-agent.
Almost all the applications in murano-apps repository work with FormatVersion
2.0.0. New features that are introduced in Kilo, such as Chef or Puppet,
and downloadable files require version 2.1.0 or greater. Since FormatVersion
2.2.0 it is possible to enable Berkshelf. It requires Mitaka version of agent.
If you omit the FormatVersion property or put something like <2.0.0,
it will lead to the incorrect behaviour. The same happens if, for example,
FormatVersion=2.1.0, and a VM has the pre-Kilo agent.

Scripts section

Scripts are the building blocks of execution plan templates. As
the name implies those are the scripts for different deployment
platforms.

Each script may consists of one or more files. Those files are
script’s program modules, resource files, configs, certificates etc.

Scripts may be executed as a whole (like a single piece of code),
expose some functions that can be independently called in an execution
plan script or both. This depends on deployment platform and executor
capabilities.

Scripts are specified using Scripts attribute of execution plan.
This attribute maps script name to a structure (document) that describes
the script. It has the following properties:

	Type

	the name of a deployment platform the script is targeted to.
The available alternative options for version>=2.1.0 are
Application, Chef, Puppet, and for version<2.1.0 is
Application only. String, required.

	Version

	the minimum version of the deployment platform/executor required
by the script. String, optional.

	EntryPoint

	the name of the script file that is an entry point for this
execution plan template. String, required.

	Files

	the filenames of the additional files required for the script. Thus,
if the script specified in the EntryPoint section imports other
scripts, they should be provided in this section.

The filenames may include slashes that the agent preserve on VM.
If a filename is enclosed in the angle brackets (<...>) it will be
base64-encoded. Otherwise, it will be treated as a plain-text that
may affect line endings.

In Kilo, entries for this property may be not just strings but also
dictionaries (for example, filename: URL) to specify downloadable files
or git repositories.

The default value is [] that means that no extra files are used.
Array, optional.

	Options

	an optional dictionary of type String->JsonObject that contains
additional options for the script executor. If not provided, an
empty dictionary is assumed.

Available alternatives are: captureStdout, captureStderr,
verifyExitcode (raise an exception if result is not positive).
As Options are executor-dependent, these three alternatives
are available for the Application executor, but may have no sense for
other types. captureStdout, captureStderr and verifyExitcode
require boolean values, and have True as their default values.

Dictionary, optional.

Please make sure the files specified in EntryPoint and Files sections exist.

HOT packages

Compose a package

Murano is an Application catalog which intends to support applications defined in different formats. As a first step to universality, support of a heat orchestration template was added.
It means that any heat template could be added as a separate application into the Application Catalog. This could be done in two ways: manual and automatic.

Automatic package composing

Before uploading an application into the catalog, it should be prepared and archived.
A Murano command line will do all preparation for you.
Just choose the desired Heat Orchestration Template and perform the following command:

murano package-create --template wordpress/template.yaml

Note, that optional parameters could be specified:

	–name:	an application name, copied from a template by default

	–logo:	an application square logo, by default the heat logo will be used

	–description:	text information about an application, by default copied from a template

	–author:	a name of an application author

	–output:	a name of an output file archive to save locally

	–full-name:	a fully qualified domain name that specifies exact application location

	–resources-dir:

	 	a path to the directory containing application resources

Note

To performing this command python-muranoclient should be installed in the system

As the result, an application definition archive will be ready for uploading.

Manual package composing

Application package could be composed manually. Follow the 5 steps below.

	Step 1. Choose the desired heat orchestration template

For this example
chef-server.yaml [https://github.com/openstack/heat-templates/blob/master/hot/chef-server.yaml]
template will be used.

	Step 2. Rename it to template.yaml

	Step 3. Prepare an application logo (optional step)

It could be any picture associated with the application.

	Step 4. Create manifest.yaml file

All service information about the application is contained here. Specify the following parameters:

	Format:	defines an application definition format; should be set to Heat.HOT/1.0

	Type:	defines a manifest type, should be set to Application

	FullName:	a unique name which will be used to identify the application in Murano Catalog

	Description:	text information about an application

	Author:	a name of an application author or a company

	Tags:	keywords associated with the application

	Logo:	a name of a logo file for an application

Take a look at the example:

Format: Heat.HOT/1.0
Type: Application
FullName: com.example.Chef-Server
Name: Chef Server
Description: "Heat template to deploy Open Source CHEF server on a VM"
Author: Kate
Tags:
 - hot-based
Logo: logo.png

	Step 5. Create a zip archive, containing the specified files: template.yaml, manifest.yaml, logo.png

Browse page looks like:

[image: ../_images/chef_server.png]
The configuration form, where you can enter template parameters, will be generated automatically and looks as follows:

[image: ../_images/chef_server_form.png]
After filling the form the application is ready to be deployed.

Hot packages with nested Heat templates

In Murano HOT packages it is possible to allow Heat nested templates to be
saved and deployed as part of a Murano Heat applications. Such templates
should be placed in package under ‘/Resources/HotFiles’. Adding additional
templates to a package is optional. When a Heat generated package is being
deployed, if there are any Heat nested templates located in the package under
‘/Resources/HotFiles’, they are sent to Heat together with the main template
and params during stack creation.

These nested templates can be referenced by putting the template name into the
type attribute of resource definition, in the main template. This
mechanism then compose one logical stack with these multiple templates. The
following examples illustrate how you can use a custom template to define new
types of resources. These examples use a custom template stored in a
sub_template.yaml file

heat_template_version: 2015-04-30

parameters:
 key_name:
 type: string
 description: Name of a KeyPair

resources:
 server:
 type: OS::Nova::Server
 properties:
 key_name: {get_param: key_name}
 flavor: m1.small
 image: ubuntu-trusty

Use the template filename as type

The following main template defines the sub_template.yaml file as value for
the type property of a resource

heat_template_version: 2015-04-30

resources:
 my_server:
 type: sub_template.yaml
 properties:
 key_name: my_key

Note

This feature is supported Liberty onwards.

MuranoPL Reference

To develop applications, murano project refers to Murano Programming
Language (MuranoPL). It is represented by easily readable YAML and
YAQL languages. The sections below describe these languages.

	YAML

	YAQL

	Common class structure

	MuranoPL Core Library

	Reflection capabilities in MuranoPL.

	Static methods and properties

	Extension methods

	MuranoPL Metadata

	Versioning

	Murano actions

	Static actions

YAML

YAML is an easily readable data serialization format that is a superset
of JSON. Unlike JSON, YAML is designed to be read and written by humans
and relies on visual indentation to denote nesting of data structures.
This is similar to how Python uses indentation for block structures
instead of curly brackets in most C-like languages. Also YAML may
contain more data types as compared to JSON. See http://yaml.org/
for a detailed description of YAML.

MuranoPL is designed to be representable in YAML so that MuranoPL code could
remain readable and structured. Usually MuranoPL files are YAML encoded documents.
But MuranoPL engine itself does not deal directly with YAML documents, and it is up to
the hosting application to locate and deserialize the definitions of particular classes.
This gives the hosting application the ability to control where those definitions can be
found (a file system, a database, a remote repository, etc.) and possibly use some other
serialization formats instead of YAML.

MuranoPL engine relies on a host deserialization code when detecting YAQL
expressions in a source definition. It provides them as instances of the YaqlExpression
class rather than plain strings. Usually, YAQL expressions can be distinguished by the
presence of $ (the dollar sign) and operators, but in YAML, a developer can always
state the type by using YAML tags explicitly. For example:

	1
2
3
4
5

	 Some text - a string
 $.something() - a YAQL expression
 "$.something()" - a string because quotes are used
 !!str $ - a string because a YAML tag is used
 !yaql "text" - a YAQL expression because a YAML tag is used

YAQL

YAQL (Yet Another Query Language) is a query language that was also
designed as a part of the murano project. MuranoPL makes an extensive
use of YAQL. A description of YAQL can be found here [https://yaql.readthedocs.org].

Simply speaking, YAQL is the language for expression evaluation.
The following examples are all valid YAQL expressions:
2 + 2, foo() > bar(), true != false.

The interesting thing in YAQL is that it has no built in list of
functions. Everything YAQL can access is customizable. YAQL cannot call
any function that was not explicitly registered to be accessible by YAQL.
The same is true for operators. So the result of the expression 2 *
foo(3, 4) completely depends on explicitly provided implementations
of “foo” and “operator_*”.

YAQL uses a dollar sign ($) to access external variables, which are also
explicitly provided by the host application, and function arguments.
$variable is a syntax to get a value of the variable “$variable”,
$1, $2, etc. are the names for function arguments. “$” is a name for current object:
data on which an expression is evaluated, or a name of a single argument. Thus,
“$” in the beginning of an expression and “$” in the middle of it can refer
to different things.

By default, YAQL has a lot of functions that can be registered in a YAQL
context. This is very similar to how SQL works but uses more Python-like
syntax. For example: $.where($.myObj.myScalar > 5,
$.myObj.myArray.len() > 0, and $.myObj.myArray.any($ = 4)).select($.myObj.myArray[0]) can be executed on $ = array of objects,
and result in another array that is a filtration and projection of a source data.

Note

There is no assignment operator in YAQL, and = means
comparison, the same what == means in Python.

As YAQL has no access to underlying operating system resources and
is fully controllable by the host, it is secure to execute YAQL expressions
without establishing a trust to the executed code. Also, because functions
are not predefined, different methods can be accessible in different
context. So, YAQL expressions that are used to specify property
contracts are not necessarily valid in workflow definitions.

Common class structure

Here is a common template for class declarations. Note, that it is in the YAML
format.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	Name: class name
Namespaces: namespaces specification
Extends: [list of parent classes]
Properties: properties declaration
Methods:
 methodName:
 Arguments:
 - list
 - of
 - arguments
 Body:
 - list
 - of
 - instructions

Thus MuranoPL class is a YAML dictionary with predefined key names, all keys except
for Name are optional and can be omitted (but must be valid if specified).

Class name

Class names are alphanumeric names of the classes. Traditionally, all class names
begin with an upper-case letter symbol and are written in PascalCasing.

In MuranoPL all class names are unique. At the same time, MuranoPL
supports namespaces. So, in different namespaces you can have classes
with the same name. You can specify a namespace explicitly, like
ns:MyName. If you omit the namespace specification, MyName is
expanded using the default namespace =:. Therefore, MyName
equals =:MyName if = is a valid namespace.

Namespaces

Namespaces declaration specifies prefixes that can be used in the class body
to make long class names shorter.

Namespaces:
 =: io.murano.services.windows
 srv: io.murano.services
 std: io.murano

In the example above, the srv: Something class name is automatically
translated to io.murano.services.Something.

= means the current namespace, so that MyClass means
io.murano.services.windows.MyClass.

If the class name contains the period (.) in its name, then it is assumed
to be already fully namespace qualified and is not expanded.
Thus ns.Myclass remains as is.

Note

To make class names globally unique, we recommend specifying a developer’s
domain name as a part of the namespace.

Extends

MuranoPL supports multiple inheritance. If present, the Extends section
shows base classes that are extended. If the list consists of a single entry,
then you can write it as a scalar string instead of an array. If you
do not specify any parents or omit the key, then the class extends
io.murano.Object. Thus, io.murano.Object is the root class
for all class hierarchies.

Properties

Properties are class attributes that together with methods create public
class interface. Usually, but not always, properties are the values, and
reference other objects that have to be entered in an environment
designer prior to a workflow invocation.

Properties have the following declaration format:

propertyName:
 Contract: property contract
 Usage: property usage
 Default: property default

Contract

Contract is a YAQL expression that says what type of the value is expected for
the property as well as additional constraints imposed on a property. Using
contracts you can define what value can be assigned to a property or argument.
In case of invalid input data it may be automatically transformed to confirm
to the contract. For example, if bool value is expected and user passes any
not null value it will be converted to True. If converting is impossible
exception ContractViolationException will be raised.

The following contracts are available:

	Operation
	Definition

	
$.int()

	
an integer value (may be null). String values consisting of digits are converted to integers

	
$.int().notNull()

	
a mandatory integer

	
$.string()

$.string().notNull()

	
a string. If the value is not a string, it is converted to a string

	
$.bool()

$.bool().notNull()

	
bools are true and false. 0 is converted to false, other integers to true

	
$.class(ns:ClassName)

$.class(ns:ClassName).notNull()

	
value must be a reference to an instance of specified class name

	
$.template(ns:ClassName)

$.template(ns:ClassName).notNull()

	
value must be a dictionary with object-model representation of specified class name

	
$.class(ns:ClassName, ns:DefaultClassName)

	
create instance of the ns:DefaultClassName class if no instance provided

	
$.class(ns:Name).check($.p = 12)

	
the value must be of the ns:Name type and have the p property equal to 12

	
$.class(ns:Name).owned()

	
a current object must be direct or indirect owner of the value

	
$.class(ns:Name).notOwned()

	
the value must be owned by any object except current one

	
[$.int()]

[$.int().notNull()]

	
an array of integers. Similar to other types.

	
[$.int().check($ > 0)]

	
an array of the positive integers (thus not null)

	
[$.int(), $.string()]

	
an array that has at least two elements, first is int and others are strings

	
[$.int(), 2]

[$.int(), 2, 5]

	
an array of ints with at least 2 items

an array of ints with at least 2 items, and maximum of 5 items

	
{ A: $.int(), B: [$.string()] }

	
the dictionary with the A key of the int type and B - an array of strings

	
$

[]

{}

	
any scalar or data structure as is

any array

any dictionary

	
{ $.string().notNull(): $.int().notNull() }

	
dictionary string -> int

	
A: StringMap

$.string().notNull(): $

	
the dictionary with the A key that must be equal to StringMap, and other keys be

any scalar or data structure

	
$.check($ in $this.myStaticMethod())

	
the value must be equal to one of a member of a list returned by static method of the class

	
$.check($this.myStaticMethod($))

	
the static method of the class must return true for the value

In the example below property port must be int value greater than 0 and
less than 65536; scope must be a string value and one of ‘public’, ‘cloud’,
‘host’ or ‘internal’, and protocol must be a string value and either
‘TCP’ or ‘UDP’. When user passes some values to these properties it will be checked
that values confirm to the contracts.

Namespaces:
 =: io.murano.apps.docker
 std: io.murano

Name: ApplicationPort

Properties:
 port:
 Contract: $.int().notNull().check($ > 0 and $ < 65536)

 scope:
 Contract: $.string().notNull().check($ in list(public, cloud, host, internal))
 Default: private

 protocol:
 Contract: $.string().notNull().check($ in list(TCP, UDP))
 Default: TCP

Methods:
 getRepresentation:
 Body:
 Return:
 port: $.port
 scope: $.scope
 protocol: $.protocol

The template contract does the same validation as the class contract,
but does not require the actual object to be passed as a property or argument.
Instead it allows to create an object from the given template later. Also you
can exclude some of the properties from validation and provide them later in
the body of the method.

Consider the following example:

Namespaces:
 =: io.murano.applications
 res: io.murano.resources
 std: io.murano

Name: TemplateServerProvider

Properties:
 template:
 Contract: $.template(res:Instance, excludeProperties => [name]).notNull()
 serverNamePattern:
 Contract: $.string().notNull()
 threshold:
 Contract: $.int().check($ > 0)

Methods:
 createReplica:
 Arguments:
 - index:
 Contract: $.int().notNull()
 - owner:
 Contract: $.class(std:Object)
 Body:
 - If: $index < $this.threshold
 Then:
 - $template: $this.template
 - $template.name: $this.serverNamePattern.format($index)
 - $template['?'].name: format('Server {0}', $index)
 - Return: new($template, $owner)
 Else:
 - Return: null

In the example above the class has the template property that is validated
by the template contract. It holds the template of the object of the
Instance class or its inheritor. In the createReplica method
template is used to dynamically create instances in runtime considering
some conditions and customizing the name property of an instance, as it
was excluded from validation.

You still can pass an actual object to the property or argument with the
template contract, but it will be automatically converted to its object
model representation.

Property usage

Usage states the purpose of the property. This implies who and how can
access it. The following usages are available:

	
Value

	
Explanation

	
In

	
Input property. Values of such properties are obtained from a user
and cannot be modified in MuranoPL workflows. This is the default
value for the Usage key.

	
Out

	
A value is obtained from executing MuranoPL workflow and cannot be
modified by a user.

	
InOut

	
A value can be modified both by user and by workflow.

	
Const

	
The same as In but once workflow is executed a property cannot be
changed neither by a user nor by a workflow.

	
Runtime

	
A property is visible only from within workflows. It is neither read
from input nor serialized to a workflow output.

	
Static

	
Property is defined on a class rather than on an instance.
See Static methods and properties for details.

	
Config

	
A property allows to have per-class configuration. A value is obtained
from the config file rather than from the object model. These config
files are stored in a special folder that is configured in the
[engine] section of the Murano config file under the
class_configs key.

The usage attribute is optional and can be omitted (which implies In).

If the workflow tries to write to a property that is not declared with
one of the types above, it is considered to be private and accessible
only to that class (and not serialized to output and thus would be
lost upon the next deployment). An attempt to read the property that was
not initialized results in an exception.

Default

Default is a value that is used if the property value is not mentioned in
the input object model, but not when it is set to null.
Default, if specified, must conform to a declared property contract.
If Default is not specified, then null is the default.

For properties that are references to other classes, Default can modify
a default value of the referenced objects. For example:

p:
 Contract: $.class(MyClass)
 Default: {a: 12}

This overrides default for the a property of MyClass for instance
of MyClass that is created for this property.

Workflow

Workflows are the methods that describe how the entities that are
represented by MuranoPL classes are deployed.

In a typical scenario, the root object in an input data model is of
the io.murano.Environment type, and has the deploy method.
This method invocation causes a series of infrastructure activities
(typically, a Heat stack modification) and the deployment scripts
execution initiated by VM agents commands. The role of the workflow
is to map data from the input object model, or a result of previously
executed actions, to the parameters of these activities and to
initiate these activities in a correct order.

Methods

Methods have input parameters, and can return a value to a caller.
Methods are defined in the Workflow section of the class using the
following template:

methodName:
 Scope: Public
 Arguments:
 - list
 - of
 - arguments
 Body:
 - list
 - of
 - instructions

Public is an optional parameter that specifies methods to be executed
by direct triggering after deployment.

Method arguments

Arguments are optional too, and are declared using the same syntax
as class properties. Same as properties, arguments also have contracts and
optional defaults.

Unlike class properties Arguments may have a different set of Usages:

	
Value

	
Explanation

	
Standard

	
Regular method argument. Holds a single value based on its contract.
This is the default value for the Usage key.

	
VarArgs

	
A variable length argument. Method body sees it as a list of values,
each matching a contract of the argument.

	
KwArgs

	
A keywrod-based argument, Method body sees it as a dict of values,
with keys being valid keyword strings and values matching a contract
of the argument.

Arguments example:

scaleRc:
 Arguments:
 - rcName:
 Contract: $.string().notNull()
 - newSize:
 Contract: $.int().notNull()
 - rest:
 Contract: $.int()
 Usage: VarArgs
 - others:
 Contract: $.int()
 Usage: KwArgs

Method body

The Method body is an array of instructions that get executed sequentially.
There are 3 types of instructions that can be found in a workflow body:

	Expressions,

	Assignments,

	Block constructs.

Method usage

Usage states the purpose of the method. This implies who and how can
access it. The following usages are available:

	
Value

	
Explanation

	
Runtime

	
Normal instance method.

	
Static

	
Static method that does not require class instance.
See Static methods and properties for details.

	
Extension

	
Extension static method that extends some other type.
See Extension methods for details.

	
Action

	
Method can be invoked from outside (using Murano API).
This option is deprecated for the package format versions > 1.3 in
favor of Scope: Public and occasionally will be no longer
supported.
See Murano actions for details.

The Usage attribute is optional and can be omitted (which implies
Runtime).

Method scope

The Scope attribute declares method visibility. It can have two possible
values:

	Session - regular method that is accessible from anywhere in the current
execution session. This is the default if the attribute is omitted;

	Public - accessible anywhere, both within the session and from
outside through the API call.

The Scope attribute is optional and can be omitted (which implies
Session).

Expressions

Expressions are YAQL expressions that are executed for their side effect.
All accessible object methods can be called in the expression using
the $obj.methodName(arguments) syntax.

	Expression
	Explanation

	
$.methodName()

$this.methodName()

	
invoke method ‘methodName’ on this (self) object

	
$.property.methodName()

$this.property.methodName()

	
invocation of method on object that is in property

	
$.method(1, 2, 3)

	
methods can have arguments

	
$.method(1, 2, thirdParameter => 3)

	
named parameters also supported

	
list($.foo().bar($this.property), $p)

	
complex expressions can be constructed

Assignment

Assignments are single key dictionaries with a YAQL expression as a key
and arbitrary structure as a value. Such a construct is evaluated
as an assignment.

	Assignment
	Explanation

	
$x: value

	
assigns value to the local variable $x

	
$.x: value

$this.x: value

	
assign value to the object’s property

	
$.x: $.y

	
copies the value of the property y to the property x

	
$x: [$a, $b]

	
sets $x to the array of two values: $a and $b

	
$x:

SomeKey:

NestedKey: $variable

	
structures of any level of complexity can be evaluated

	
$.x[0]: value

	
assigns value to the first array entry of the x property

	
$.x: $.x.append(value)

	
appends value to the array in the x property

	
$.x: $.x.insert(1, value)

	
inserts value into position 1 of the array in the x property

	
$x: list($a, $b).delete(0)

	
sets $x to the list without the item at index 0

	
$.x.key.subKey: value

$.x[key][subKey]: value

	
deep dictionary modification

Block constructs

Block constructs control a program flow. They are dictionaries that have
strings as all their keys.

The following block constructs are available:

	Assignment
	Explanation

	
Return: value

	
Returns value from a method

	
If: predicate()

Then:

- code

- block

Else:

- code

- block

	
predicate() is a YAQL expression that must be evaluated to True or False

The Else section is optional

One-line code blocks can be written as scalars rather than an array.

	
While: predicate()

Do:

- code

- block

	
predicate() must be evaluated to True or False

	
For: variableName

In: collection

Do:

- code

- block

	
collection must be a YAQL expression returning iterable collection or
evaluatable array as in assignment instructions, for example, [1, 2, $x]

Inside a code block loop, a variable is accessible as $variableName

	
Repeat:

Do:

- code

- block

	
Repeats the code block specified number of times

	
Break:

	
Breaks from loop

	
Match:

case1:

- code

- block

case2:

- code

- block

Value: $valExpression()

Default:

- code

- block

	
Matches the result of $valExpression() against a set of possible values
(cases). The code block of first matched case is executed.

If no case matched and the default key is present
than the Default code block get executed.

The case values are constant values (not expressions).

	
Switch:

$predicate1():

- code

- block

$predicate2():

- code

- block

Default:

- code

- block

	
All code blocks that have their predicate evaluated to True are executed,
but the order of predicate evaluation is not fixed.

The Default key is optional.

If no predicate evaluated to True, the Default code block get executed.

	
Parallel:

- code

- block

Limit: 5

	
Executes all instructions in code block in a separate green threads in parallel.

The limit is optional and means the maximum number of concurrent green threads.

	
Try:

- code

- block

Catch:

With: keyError

As: e

Do:

- code

- block

Else:

- code

- block

Finally:

- code

- block

	
Try and Catch are keywords that represent the handling of exceptions due to data
or coding errors during program execution. A Try block is the block of code in
which exceptions occur. A Catch block is the block of code, that is executed if
an exception occurred.

Exceptions are not declared in Murano PL. It means that exceptions of any types can
be handled and generated. Generating of exception can be done with construct:
Throw: keyError.

The Else is optional block. Else block is executed if no exception occurred.

The Finally also is optional. It’s a place to put any code that will
be executed, whether the try-block raised an exception or not.

Notice, that if you have more than one block construct in your workflow, you
need to insert dashes before each construct. For example:

Body:
 - If: predicate1()
 Then:
 - code
 - block
 - While: predicate2()
 Do:
 - code
 - block

Object model

Object model is a JSON serialized representation of objects and their
properties. Everything you do in the OpenStack dashboard is reflected
in an object model. The object model is sent to the Application catalog engine
when the user decides to deploy the built environment. On the engine
side, MuranoPL objects are constructed and initialized from the received
Object model, and a predefined method is executed on the root object.

Objects are serialized to JSON using the following template:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	{
 "?": {
 "id": "globally unique object ID (UUID)",
 "type": "fully namespace-qualified class name",

 "optional designer-related entries can be placed here": {
 "key": "value"
 }
 },

 "classProperty1": "propertyValue",
 "classProperty2": 123,
 "classProperty3": ["value1", "value2"],

 "reference1": {
 "?": {
 "id": "object id",
 "type": "object type"
 },

 "property": "value"
 },

 "reference2": "referenced object id"
}

Objects can be identified as dictionaries that contain the ? entry.
All system fields are hidden in that entry.

There are two ways to specify references:

	reference1 as in the example above. This method allows inline
definition of an object. When the instance of the referenced object
is created, an outer object becomes its parent/owner that is responsible
for the object. The object itself may require that its parent
(direct or indirect) be of a specified type, like all applications
require to have Environment somewhere in a parent chain.

	Referring to an object by specifying other object ID. That object must
be defined elsewhere in an object tree. Object references distinguished
from strings having the same value by evaluating property contracts.
The former case would have $.class(Name) while the later - the
$.string() contract.

MuranoPL Core Library

Some objects and actions can be used in several application deployments.
All common parts are grouped into MuranoPL libraries.
Murano core library is a set of classes needed in each deployment.
Class names from core library can be used in the application definitions.
This library is located under the meta [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano]
directory.

Classes included in the Murano core library are as follows:

io.murano

	Class: Object

	Class: Application

	Class: SecurityGroupManager

	Class: Environment

	Class: CloudRegion

io.murano.resources

	Class: Instance

	Class: Network

io.murano.system

	Class: Logger

	Class: StatusReporter

Class: Object

A parent class for all MuranoPL classes. It implements the initialize,
setAttr, and getAttr methods defined in the pythonic part of the Object class.
All MuranoPL classes are implicitly inherited from this class.

See also

Source Object.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Object.yaml]
file.

Class: Application

Defines an application itself. All custom applications must be derived from
this class.

See also

Source Application.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Application.yaml]
file.

Class: SecurityGroupManager

Manages security groups during an application deployment.

See also

Source SecurityGroupManager.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/system/SecurityGroupManager.yaml]
file.

Class: CloudRegion

Defines a CloudRegion and groups region-local properties

CloudRegion class properties

	Property
	Description
	Default usage

	name
	A region name.
	In

	agentListener
	A property containing the io.murano.system.AgentListener object
that can be used to interact with Murano Agent.
	Runtime

	stack
	A property containing a HeatStack object that can be used to interact
with Heat.
	Runtime

	defaultNetworks
	A property containing user-defined Networks
(io.murano.resources.Network) that can be used as default networks
for the instances in this environment.
	In

	securityGroupManager
	A property containing the SecurityGroupManager object that can
be used to construct a security group associated with this environment.
	Runtime

See also

Source CloudRegion.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/CloudRegion.yaml]
file.

Class: Environment

Defines an environment in terms of the deployment process and
groups all Applications and their related infrastructures. It also able
to deploy them at once.

Environments is intent to group applications to manage them easily.

Environment class properties

	Property
	Description
	Default usage

	name
	An environment name.
	In

	applications
	A list of applications belonging to an environment.
	In

	agentListener
	A property containing the io.murano.system.AgentListener object
that can be used to interact with Murano Agent.
	Runtime

	stack
	A property containing a HeatStack object in default region that can
be used to interact with Heat.
	Runtime

	instanceNotifier
	A property containing the io.murano.system.InstanceNotifier object
that can be used to keep track of the amount of deployed instances.
	Runtime

	defaultNetworks
	A property containing templates for user-defined Networks in regions
(io.murano.resources.Network).
	In

	securityGroupManager
	A property containing the SecurityGroupManager object from default region
that can be used to construct a security group associated with this environment.
	Runtime

	homeRegionName
	A property containing the name of home region from murano config
	Runtime

	regions
	A property containing the map regionName -> CloudRegion instance.
	InOut

	regionConfigs
	A property containing the map regionName -> CloudRegion config
	Config

See also

Source Environment.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Environment.yaml]
file.

Class: Instance

Defines virtual machine parameters and manages an instance lifecycle: spawning,
deploying, joining to the network, applying security group, and deleting.

Instance class properties

	Property
	Description
	Default usage

	regionName
	Inherited from CloudResource. Describe region for instance deployment
	In

	name
	An instance name.
	In

	flavor
	An instance flavor defining virtual machine hardware parameters.
	In

	image
	An instance image defining operation system.
	In

	keyname
	Optional. A key pair name used to connect easily to the instance.
	In

	agent
	Configures interaction with the Murano agent using
io.murano.system.Agent.
	Runtime

	ipAddresses
	A list of all IP addresses assigned to an instance. Floating ip address
is placed in the list tail if present.
	Out

	networks
	Specifies the networks that an instance will be joined to.
Custom networks that extend Network class can be
specified. An instance will be connected to them and for the default
environment network or flat network if corresponding values are set
to True. Without additional configuration, instance will be joined
to the default network that is set in the current environment.
	In

	volumes
	Specifies the mapping of a mounting path to volume implementations
that must be attached to the instance. Custom volumes that extend
Volume class can be specified.
	In

	blockDevices
	Specifies the list of block device mappings that an instance will use
to boot from. Each mapping defines a volume that must be an instance of
Volume class, device name, device type, and boot order.
Either the blockDevices property or image property must be
specified in order to boot an instance
	In

	assignFloatingIp
	Determines if floating IP is required. Default is False.
	In

	floatingIpAddress
	IP addresses assigned to an instance after an application deployment.
	Out

	securityGroupName
	Optional. A security group that an instance will be joined to.
	In

See also

Source Instance.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/resources/Instance.yaml]
file.

Resources

Instance class uses the following resources:

	Agent-v2.template

	Python Murano Agent template.

Note

This agent is supposed to be unified. Currently, only Linux-based
machines are supported. Windows support will be added later.

	linux-init.sh

	Python Murano Agent initialization script that sets up an agent with
valid information containing an updated agent template.

	Agent-v1.template

	Windows Murano Agent template.

	windows-init.sh

	Windows Murano Agent initialization script.

Class: Network

The basic abstract class for all MuranoPL classes representing networks.

See also

Source Network.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/resources/Network.yaml]
file.

Class: Logger

Logging API is the part of core library since Liberty release. It was
introduced to improve debuggability of MuranoPL programs.

You can get a logger instance by calling a logger function which
is located in io.murano.system namespace. The logger function takes
a logger name as the only parameter. It is a common recommendation to use full
class name as a logger name within that class. This convention avoids names
conflicts in logs and ensures a better logging subsystem configurability.

Logger class instantiation:

$log: logger('io.murano.apps.activeDirectory.ActiveDirectory')

Log levels prioritized in order of severity

	Level
	Description

	CRITICAL
	Very severe error events that will presumably lead the application
to abort.

	ERROR
	Error events that might not prevent the application from running.

	WARNING
	Events that are potentially harmful but will allow the application
to continue running.

	INFO
	Informational messages highlighting the progress of the application
at the coarse-grained level.

	DEBUG
	Detailed informational events that are useful when debugging an
application.

	TRACE
	Even more detailed informational events comparing to the DEBUG level.

There are several methods that fully correspond to the log levels you can use
for logging events. They are debug, trace, info, warning,
error, and critical.

Logging example:

$log.info('print my info message {message}', message=>message)

Logging methods use the same format rules as the YAQL format
function. Thus the line above is equal to the:

$log.info('print my info message {message}'.format(message=>message))

To print an exception stacktrace, use the exception method.
This method uses the ERROR level:

Try:
 - Throw: exceptionName
 Message: exception message
Catch:
With: exceptionName
As: e
Do:
 - $log.exception($e, 'something bad happen "{message}"', message=>message)

Note

You can configure the logging subsystem through the logging.conf file
of the Murano Engine.

See also

	Source Logger.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/system/Logger.yaml]
file.

	OpenStack networking logging
configuration [http://docs.openstack.org/liberty/config-reference/content/networking-options-logging.html].

Class: StatusReporter

Provides feedback feature. To follow the deployment process in the UI, all status changes should be included
in the application configuration.

See also

Source StatusReporter.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/system/StatusReporter.yaml]
file.

Reflection capabilities in MuranoPL.

Reflection provides objects that describes MuranoPL classes and packages.

The first important function is typeinfo . Usage:

$typeInfo: typeinfo($someObject)

Now $typeInfo variable contains instance of type of $someObject (MuranoClass instance).

MuranoPL provide following abilities to reflection:

Types

	Property
	Description

	name
	name of MuranoPL class

	version
	version (SemVer [http://semver.org]) of MuranoPL class.

	ancestors
	list of class ancestors

	properties
	list of class properties. See Properties

	package
	package information. See Packages

	methods
	list of methods. See Methods

	type
	reference to type, which can be used as argument in engine functions

Example

- $typeInfo: typeinfo($)
...
log name, version and package name of this class
- $log.info("This is "{class_name}/{version} from {package}",
 class_name => $typeInfo.name,
 version => str($typeInfo.version),
 package => $typeInfo.package.name))
- $log.info("Ancestors:")
- For: ancestor
 In: $typeInfo.ancestors
 Do:
 #log all ancestors names
 - $log.info("{ancestor_name}", ancestor_name => $ancestor.name)
log full class version
- $log.info("{version}", version => str($typeInfo.version))
create object with same class
- $newObject = new($typeInfo.type)

Properties

Property introspection

	Property
	Description

	name
	name of property

	hasDefault
	boolean value. True, if property has default value, False otherwise

	usage
	Usage property’s field. See Property usage for details

	declaringType
	type - owner of declared property

Property access

	Methods
	Description

	$property.setValue($target, $value)
	set value of $property for object $target to $value

	$property.getValue($target)
	get value of $property for object $target

Example

- $typeInfo: typeinfo($)
...
select first property
- $selectedPropety: $typeInfo.properties.first()
log property name
- $log.info("Hi, my name is {p_name}, p_name => $selectedProperty.name)
set new property value
- $selectedProperty.setValue($, "new_value")
log new property value using reflection
- $log.info("My new value is {value}", value => $selectedProperty.getValue($))
also, if property static, $target can be null
- $log.info("Static property value is {value},
 value => $staticProperty.getValue(null))

Packages

	Property
	Description

	types
	list of types, declared in package

	name
	package name

	version
	package version

Example

- $typeInfo: typeinfo($)
...
- $packageRef: $typeInfo.package
- $log.info("This is package {p_name}/{p_version}",
 p_name => $packageRef.name,
 p_version => str($packageRef.version))
- $log.info("Types in package:")
- For: type_
 In: $packageRef.types
 Do:
 - $log.info("{typename}", typename => type_.name)

Methods

Methods properties

	Property
	Description

	name
	method’s name

	declaringType
	type - owner of declared method

	arguments
	list of method’s arguments. See Method arguments

Method invoking

	Methods
	Description

	$method.invoke($target, $arg1, ... $argN, kwarg1 => value1, ..., kwargN => valueN)
	call $target‘s method $method with $arg1, ..., $argN positional arguments and kwarg1, kwargN named arguments

Example

- $typeInfo: typeinfo($)
...
select single method by name
- $selectedMethod: $typeInfo.methods.where($.name = sampleMethodName).single()
log method name
- $log.info("Method name: {m_name}", m_name => $selectedMethod.name)
log method arguments names
- For: argument
 In: $selectedMethod.arguments
 Do:
 - $log.info("{name}", name => $argument.name)
call method with positional argument 'bar' and named `baz` == 'baz'
- $selectedMethod.invoke($, 'bar', baz => baz)

Method arguments

	Property
	Description

	name
	argument’s name

	hasDefault
	True if argument has default value, False otherwise

	declaringMethod
	method - owner of argument

	usage
	argument’s usage type. See Method arguments for details

- $firstArgument: $selectedMethod.arguments.first()
store argument's name
- $argName: $firstArgument.name
store owner's name
- $methodName: $firstArgument.declaringMethod.name
- $log.info("Hi, my name is {a_name} ! My owner is {m_name}",
 a_name => $argName,
 m_name => $methodName)

Static methods and properties

In MuranoPL, static denotes class methods and class properties (as opposed to
instance methods and instance properties). These methods and properties can be
accessed without an instance present.

Static methods are often used for helper methods that are not bound to any object
(that is, do not maintain a state) or as a convenient way to write a class factory.

Type objects

Usually static methods and properties are accessed using type object. That
is, an object that represents the class rather than class instance.

For any given class foo.Bar its type object may be retrieved using
any of the following ways:

	Using ns:Bar notation considering that ns is declared in Namespaces
section (and it is foo in this case),

	Using :Bar syntax if Bar is in the current namespace (that is, what
=:Bar would mean if = was a valid namespace prefix),

	Using type() function with a fully qualified class name: type('foo.Bar'),

	By obtaining a type of class instance: type($object) (available for
packages with format version starting from 1.3),

	Through reflection: typeinfo($object).type.

No matter what method was used to get type object, the returned object will
be the same because there can be only one type object per class.

All functions that accept type name, for example new() function, also
accept type objects.

Accessing static methods and properties

Static methods can be invoked using one of the two ways:

	Using type object: ns:Bar.foo(arg), :Bar.foo(arg), and so on,

	On a class instance similar to normal methods: $obj.foo(arg).

	Access to properties is similar to that:

	
	Using type object: ns:Bar.property, :Bar.property, and so on,

	On a class instance: $obj.property.

Static properties are defined on a class rather than on an instance.
Therefore, their values will be the same for all class instances (for
particular version of the class).

Declaration of static methods and properties

Methods and properties are declared to be static by specifying
Usage: Static on them.

For example:

Properties:
 property:
 Contract: $.string()
 Usage: Static

Methods:
 foo:
 Usage: Static
 Body:
 - Return: $.property

Static properties are never initialized from object model but can be modified
from within MuranoPL code (i.e. they are not immutable).
Static methods also can be executed as an action from outside using
Scope: Public. Within static method Body $this (and $ if not
set to something else in expression) are set to type object rather than to
instance, as it is for regular methods.

Static methods written in Python

For MuranoPL classes entirely or partially written in Python, all methods
that have either @staticmethod or @classmethod decorators are
automatically imported as static methods and work as they normally do in
Python.

Extension methods

Extension methods are a special kind of static methods that can act as if they
were regular instance methods of some other type.

Extension methods enable you to “add” methods to existing types without
modifying the original type.

Defining extension methods

Extension methods are declared with the Usage: Extension modifier.

For example:

Name: SampleClass
Methods:
 mul:
 Usage: Extension
 Arguments:
 - self:
 Contract: $.int().notNull()
 - arg:
 Contract: $.int().notNull()
 Body:
 Return: $self * $arg

Extension method are said to extend some other type and that type is deducted
from the first method argument contract. Thus extension methods must have
at least one argument.

Extension methods can also be written in Python just the same way as static
methods. However one should be careful in method declaration and use precise
YAQL specification of the type of first method argument otherwise the method
will become an extension of any type.

To turn Python static method into extension method it must be decorated with
@yaql.language.specs.meta('Usage', 'Extension') decorator.

Using extension methods

The example above defines a method that extends integer type. Therefore, with
the method above it becomes possible to say 2.mul(3). However, the most
often usage is to extend some existing MuranoPL class using class()
contract.

If the first argument contract does not have notNull(), then the method
can be invoked on the null object as well (like null.foo()).

Extension methods are static methods and, therefore,can be invoked in a usual
way on type object: :SampleClass.mul(2, 3). However, unlike regular static
methods extensions cannot be invoked on a class instance because this can
result in ambiguity.

Using extension lookup order

When somewhere in the code the $foo.bar() expression is encountered, MuranoPL
uses the following order to locate bar() implementation:

	If there is an instance or static method in $foo‘s class, it will be used.

	Otherwise if the current class (where this expression was encountered) has
an extension method called bar and $foo satisfies the contract of
its first argument, then this method will be called.

Normally, if no method was found an exception will be raised. However,
additional extension methods can be imported into the current context. This is
done using the Import keyword on a class level. The Import section
specifies either a list or a single type name (or type object) which extension
methods will be available anywhere within the class code:

Name: MyClass
Import:
- ns:SomeOtherType
- :ClassFomCurrentContext
- 'io.murano.foo.Bar'

If no method was found with the algorithm above, the search continues on
extension methods of all classes listed in the Import section in the order
types are listed.

MuranoPL Metadata

MuranoPL metadata is a way to attach additional information to various MuranoPL
entities such as classes, packages, properties, methods, and method arguments.
That information can be used by both applications (to implement dynamic
programming techniques) or by the external callers (API consumers like UI or
even by the Murano Engine itself to impose some runtime behavior based on
well known meta values). Thus, metadata is a flexible alternative to adding new
keyword for every new feature.

Work with metadata includes the following cases:

	Defining your own metadata classes

	Attaching metadata to various parts of MuranoPL code

	Obtaining metadata and its usage

Define metadata classes

Define MuranoPL class with the description of arbitrary metadata. The class
that can be used as metadata differs from the regular class:

	The Usage attribute of the former equals to Meta, while the Usage
attribute of the latter equals to Class. The default value of the
Usage attribute is Class.

	Metadata class has additional attributes (Cardinality, Applies and
Inherited) to control how and where instances of that class can be
attached.

Cardinality

The Cardinality attribute can be set to either One or Many and
indicates the possibility to attach two or more instances of metadata to a
single language entity. The default value is One.

Applies

The Applies attribute can be set to one of Package, Type,
Method, Property, Argument or All and controls the possible
language entities which instances of metadata class can be attached to. It is
possible to specify several values using YAML list notation. The default value
is All.

Inherited

The Inherited attribute can be set to true or false and specifies
if there is metadata retained for child classes, overridden methods and
properties. The default value is false.

Using of Inherited: true has the following consequences.

If some class inherits from two classes with the same metadata attached and
this metadata has Cardinality: One, it will lead to emerging of two
metadata objects with Cardinality: One within a single entity and will
throw an exception. However, if the child class has this metadata attached
explicitly, it will override the inherited metas and there is no conflict.

If the child class has the same meta as its parent (attached explicitly),
then in case of Cardinatity: One the meta of the child overrides the
meta of the parent as it is mentioned above. And in case of
Cardinatity: Many meta of the parent is added to the list of the child’s
metas.

Example

The following example shows a simple meta-class implementation:

Name: MetaClassOne
Usage: Meta
Cardinality: One
Applies: All

Properties:
 description:
 Contract: $.string()
 Default: null

 count:
 Contract: $.int().check($ >= 0)
 Default: 0

MetaClassOne is defined as a metadata class by setting the Usage
attribute to Meta. The Cardinality and Applies attributes determine
that only one instance of MetaClassOne can be attached to object of any
type. The Inherited attribute is omitted so there is no metadata
retained for child classes, overridden methods and properties. In the
example above, Cardinality and Applies can be omitted as well, as
their values are set to default but in this case the author wants to be
explicit.

The following example shows metadata class with different values of attributes:

Name: MetaClassMany
Usage: Meta
Cardinality: Many
Applies: [Property, Method]
Inherited: true

Properties:
 description:
 Contract: $.string()
 Default: null

 count:
 Contract: $.int().check($ >= 0)
 Default: 0

An instance (or several instances) of MetaClassMany can be attached to
either property or method. Overridden methods and properties inherit
metadata from its parents.

Attach metadata to a MuranoPL entity

To attach metadata to MuranoPL class, package, property, method or method
argument, add the Meta keyword to its description. Under the
description, specify a list of metadata class instances which you want to
attach to the entity. To attach only one metadata class instance, use a single
scalar instead of a list.

Consider the example of attaching previously defined metadata to different
entities in a class definition:

Namespaces:
 =: io.murano.bar
 std: io.murano
 res: io.murano.resources
 sys: io.murano.system

Name: Bar

Extends: std:Application

Meta:
 MetaClassOne:
 description: "Just an empty application class with some metadata"
 count: 1

Properties:
 name:
 Contract: $.string().notNull()
 Meta:
 - MetaClassOne:
 description: "Name of the app"
 count: 1
 - MetaClassMany:
 count: 2
 - MetaClassMany:
 count: 3

Methods:
 initialize:
 Body:
 - $._environment: $.find(std:Environment).require()
 Meta:
 MetaClassOne:
 description: "Method for initializing app"
 count: 1

 deploy:
 Body:
 - If: not $.getAttr(deployed, false)
 Then:
 - $._environment.reporter.report($this, 'Deploy started')
 - $._environment.reporter.report($this, 'Deploy finished')
 - $.setAttr(deployed, true)

The Bar class has an instance of metadata class MetaClassOne attached.
For this, the Meta keyword is added to the Bar class description and
the instance of the MetaClassOne class is specified under it. This
instance’s properties are description and count.

There are three meta-objects attached to the name property of the Bar
class. One of it is a MetaclassOne object and the other two are
MetaClassMany objects. There can be more than one instance of
MetaClassMany attached to a single entity since the Cardinality
attribute of MetaClassMany is set to Many.

The initialize method of Bar also has its metadata.

To attach metadata to the package, add the Meta keyword to
manifest.yaml file.

Example:

Format: 1.0
Type: Application
FullName: io.murano.bar.Bar
Name: Bar
Description: |
 Empty Description
Author: author
Tags: [bar]
Classes:
 io.murano.bar.Bar: Bar.yaml
 io.murano.bar.MetaClassOne: MetaClassOne.yaml
 io.murano.bar.MetaClassMany: MetaClassMany.yaml
Supplier:
 Name: Name
 Description: Description
 Summary: Summary
Meta:
 io.murano.bar.MetaClassOne:
 description: "Just an empty application with some metadata"
 count: 1

Obtain metadata in runtime

Metadata can be accessed from MuranoPL using reflection capabilities and
from Python code using existing YAQL mechanism.

The following example shows how applications can access attached metadata:

Namespaces:
 =: io.murano.bar
 std: io.murano
 res: io.murano.resources
 sys: io.murano.system

Name: Bar

Extends: std:Application

Meta:
 MetaClassOne:
 description: "Just an empty application class with some metadata"

Methods:
 sampleAction:
 Scope: Public
 Body:
 - $._environment.reporter.report($this, typeinfo($).meta.
 where($ is MetaClassOne).single().description)

The sampleAction method is added to the Bar class definition. This
makes use of metadata attached to the Bar class.

The information about the Bar class is received by calling the
typeinfo function. Then metadata is accessed through the meta
property which returns the collection of all meta attached to the property.
Then it is checked that the meta is a MetaClassOne object to ensure that
it has description. While executing the action, the phrase “Just an
empty application class with some metadata” is reported to a log. Some
advanced usages of MuranoPL reflection capabilities can be found in the
corresponding section of this reference.

By using metadata, an application can get information of any type attached
to any object and use this information to change its own behavior. The most
valuable use-cases of metadata can be:

	Providing information about capabilities of application and its parts

	Setting application requirements

Capabilities can include version of software, information for use in UI or
CLI, permissions, and any other. Metadata can also be used in requirements as
a part of the contract.

The following example demonstrates the possible use cases for the metadata:

Name: BlogApp

Meta:
 m:SomeFeatureSupport:
 support: true

Properties:
 volumeName:
 Contract: $.string().notNull()
 Meta:
 m:Deprecated:
 text: "volumeName property is deprecated"
 server:
 Contract: $.class(srv:CoolServer).notNull().check(typeinfo($).meta.
 where($ is m:SomeFeatureSupport and $.support = true).any())

Methods:
 importantAction:
 Scope: Public
 Meta:
 m:CallerMustBeAdmin

Note, that the classes in the example do not exist as of Murano Mitaka, and
therefore the example is not a real working code.

The SomeFeatureSupport metadata with support: true says that the
BlogApp application supports some feature. The Deprecated metadata
attached to the volumeName property informs that this
property has a better alternative and it will not be used in the future
versions anymore. The CallerMustBeAdmin metadata attached to the
importantAction method sets permission to execute this method to the
admin users only.

In the contract of the server property it is specified that the server
application must be of the srv:CoolServer class and must have the
attached meta-object of the m:SomeFeatureSupport class with the
support property set to true.

Versioning

Versioning is an ability to assign a version number to some particular package
(and, in turn, to a class) and then distinguish packages with different
versions.

Package version

It is possible to specify a version for packages. You can import several
versions of the same package simultaneously and even deploy them inside a
single environment. To do this, you should use Glare as a storage for packages.
But if you’re going to keep only the latest version API is still good enough
and both FormatVersion and Version rules will still be there. For more
information about using Glare, refer to Using Glare as a storage for packages.

To specify the version of your package, add a new section to the manifest file:

Version: 0.1.0

It should be standard SemVer format version string consisting of 3 parts:
Major.Minor.Patch and optional SemVer suffixes
[-dev-build.label[+metadata.label]].
All MuranoPL classes have the version of the package they are contained in.
If no version is specified, the package version is 0.0.0.

Note

It is impossible to show multiple versions of the same application in murano
dashboard: only the last one is shown if the multiple versions are present.

Package requirements

In some cases, packages may require other packages for their work.
You need to list such packages in the Require section of the manifest
file:

Require:
 package1_FQN: version_spec_1
 ...
 packageN_FQN: version_spec_N

version_spec here denotes the allowed version range. It can be either in
semantic_version specification pip-like format or as a partial version string.
If you do not want to specify the package version, leave this value empty:

Require:
 package1_FQN: '>=0.0.3'
 package2_FQN:

In this case, version specification is equal to 0.

Note

All packages depend on the io.murano package (Core Library). If you do not
specify this requirement in the list (or the list is empty, or there is
no Require key in the package manifest), then dependency io.murano: 0
will be automatically added.

Object version

You can specify the version of the objects in UI definition when your
application requires a specific version of some class. To do this, add a new key
classVersion to section ? describing the object:

?:
 type: io.test.apps.TestApp
 classVersion: version_spec

Side-by-side versioning of packages

In some cases it might happen that several different versions of the same class
are simultaneously present in a single environment:

	There are different versions of the same MuranoPL class inside a single
object model (environment).

	Several class versions encounter within class parents. For example, class A
extends B and C and class C inherits B2, where B and B2 are two different
versions of the same class.

The first case, when two different versions of the same class need to communicate
with each other, is handled by the fact that in order to do that there is a
class() contract for that value. class() contract validates object
version against package requirements. If class A has a property with contract
$.class(B), then an object passed in this property when upcasted to B must have a
version compatible with requirement specification in A’s package (requesting
B’s package).

For the second case, where a single class attempts to inherit from two
different versions of the same class engine (DSL), it attempts to find a
version of this class which satisfies all parties and use it instead.
However, if it is impossible, all remained different versions of the same class
are treated as if they are unrelated classes.

For example: classA inherits classB from packageX and classC from packageY.
Both classB and classC inherit from classD from packageZ; however, packageX
depends on the version 1.2.0 of packageZ, while packageY depends on the
version 1.3.0. This leads to a situation when classA transitively inherits
classD of both versions 1.2 and 1.3. Therefore, an exception is thrown.
However, if packageY’s dependency would be just “1” (which means any of the
1.x.x family), the conflict would be resolved and the 1.2 would be used as it
satisfies both inheritance chains.

Murano engine is free to use any package version that is valid for the spec.
For example, one application requires packageX with version spec < 0.3 and
another package with the spec > 0. If both packages are get used in the same
environment and the engine already loaded version 0.3 it can still use it for
the second requirement even if there is a package with version 0.4 in the
catalog and the classes from both classes are never interfere. In other words,
engine always tries to minimize the number of versions in use for
the single package to avoid conflicts and unnecessary package downloads.
However, it also means that packages not always get the latest requirements.

Manifest format versioning

The manifests of packages are versioned using Format attribute. Currently,
available versions are: 1.0, 1.1, 1.2 and 1.3.
The versioning of manifest format is directly connected with YAQL and version
of murano itself.

The short description of versions:

	Format version
	Description

	1.0
	supported by all versions of murano. Use this version
if you are planning to use yaql 0.2 in your
application

	1.1
	supported since Liberty. yaql 0.2 is supported in
legacy mode. Specify it, if you want to use features
from yaql 0.2 and yaql 1.0.0 at the same time in
your application.

	1.2
	supported since Liberty. Do not use yaql 0.2 in
applications with this format.

	1.3
	supported since Mitaka. yaql 1.1 is available. It’s
recommended specifying this format in new applications,
where compatibility with older versions of murano is not
required.

	1.4
	supported since Newton. Keyword Scope is introduced
for class methods to declare method’s accessibility from
outside through the API call.

UI forms versioning

UI forms are versioned using Format attribute inside YAML definition.
For more information, refer to corresponding documentation.

Execution plan format versioning

Format of an execution plan can be specified using property FormatVersion.
More information can be found here.

Murano actions

Murano action is a type of MuranoPL method. The differences from a regular
MuranoPL method are:

	Action is executed on deployed objects.

	Action execution is initiated by API request, you do not have to call
the method manually.

So murano action allows performing any operations on objects:

	Getting information from the VM, like a config that is generated during the
deployment

	VM rebooting

	Scaling

A list of available actions is formed during the environment deployment.
Right after the deployment is finished, you can call action asynchronously.
Murano engine generates a task for every action. Therefore, the action status
can be tracked.

Note

Actions may be called against any MuranoPL object, including Environment,
Application, and any other objects.

Note

Now murano doesn’t support big files download during action execution. This is
because action results are stored in murano database and are limited by
approximately 10kb size.

To mark a method as an action, use Scope: Public or Usage: Action.
The latter option is deprecated for the package format versions > 1.3 and
occasionally will be no longer supported. Also, you cannot use both
Usage: Action and Scope: Session in one method.

The following example shows an action that returns an archive with a
configuration file:

exportConfig:
 Scope: Public
 Body:
 - $._environment.reporter.report($this, 'Action exportConfig called')
 - $resources: new(sys:Resources)
 - $template: $resources.yaml('ExportConfig.template')
 - $result: $.masterNode.instance.agent.call($template, $resources)
 - $._environment.reporter.report($this, 'Got archive from Kubernetes')
 - Return: new(std:File, base64Content => $result.content,
 filename => 'application.tar.gz')

List of available actions can be found with environment details or application
details API calls. It’s located in object model special data.
Take a look at the following example:

Request:
http://localhost:8082/v1/environments/<id>/services/<id>

Response:

{
 "name": "SimpleVM",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "SimpleApp"
 },
 "type": "com.example.Simple",
 "id": "e34c317a-f5ee-4f3d-ad2f-d07421b13d67",
 "_actions": {
 "e34c317a-f5ee-4f3d-ad2f-d07421b13d67_exportConfig": {
 "enabled": true,
 "name": "exportConfig"
 }
 }
 }
}

Static actions

Static methods (Static methods and properties) can also be called
through the API if they are exposed by specifying Scope: Public, and the
result of its execution will be returned.

Consider the following example of the static action that makes use both of
static class property and user’s input as an argument:

Name: Bar

Properties:
 greeting:
 Usage: Static
 Contract: $.string()
 Default: 'Hello, '

Methods:
 staticAction:
 Scope: Public
 Usage: Static
 Arguments:
 - myName:
 Contract: $.string().notNull()
 Body:
 - Return: concat($.greeting, $myName)

Request:
http://localhost:8082/v1/actions

Request body:

{
 "className": "ns.Bar",
 "methodName": "staticAction",
 "parameters": {"myName": "John"}
}

Responce:

"Hello, John"

Murano packages

	Package structure

	Dynamic UI definition specification

	Version history

	Murano package repository

Package structure

The structure of the Murano application package is predefined. An
application could be successfully uploaded to an application catalog.

The application package root folder should contain the following:

	manifest.yaml file

	is an application entry point.

Note

the filename is fixed, do not use any custom names.

	Classes folder

	contains MuranoPL class definitions.

	Resources folder

	contains execution plan templates and the scripts
folder with all the files required for an application
deployment located in it.

	UI folder

	contains the dynamic UI YAML definitions.

	logo.png file (optional)

	is an image file associated to your application.

Note

There are no any special limitations regarding an image filename.
Though, if it differs from the default logo.png, specify it
in an application manifest file.

	images.lst file (optional)

	contains a list of images required by an application.

Here is the visual representation of the Murano application
package structure:

[image: ../../_images/structure.png]

Dynamic UI definition specification

The main purpose of Dynamic UI is to generate application creation
forms “on-the-fly”. The Murano dashboard does not know anything about
applications that will be presented in the catalog and which web forms are
required to create an application instance. So all application definitions
should contain an instruction, which tells the dashboard how to create an
application and what validations need to be applied. This document will help
you to compose a valid UI definition for your application.

The UI definition should be a valid YAML file and may contain the following
sections (for version 2.x):

	
	Version

	Points out the syntax version in use. Optional

	
	Templates

	An auxiliary section, used together with an Application section
to help with object model composing. Optional

	
	Parameters

	An auxiliary section for evaluated once parameters. Optional

	
	ParametersSource

	A static action name (ClassName.methodName) to call for additional
parameters. Optional

	
	Application

	Object model description passed to murano engine and used for application
deployment. Required

	
	Forms

	Web form definitions. Required

Version

The syntax and format of dynamic UI definitions may change over time, so the
concept of format versions is introduced. Each UI definition file may contain
a top-level section called Version to indicate the minimum version of Murano
Dynamic UI platform which is capable to process it.
If the section is missing, the format version is assumed to be latest supported.

The version consists of two non-negative integer segments, separated by a dot,
i.e. has a form of MAJOR.MINOR.
Dynamic UI platforms having the same MAJOR version component are compatible:
i.e. the platform having the higher version may process UI definitions with
lower versions if their MAJOR segments are the same.
For example, Murano Dynamic UI platform of version 2.2 is able to process UI
definitions of versions 2.0, 2.1 and 2.2, but is unable to process 3.0 or
1.9.

Currently, the latest version of Dynamic UI platform is 2.3. It is incompatible
with UI definitions of Version 1.0, which were used in Murano releases before
Juno.

Note

Although the Version field is considered to be optional, its default
value is the latest supported version. So if you intent to use applications
with the previous stable murano version, verify that the version
is set correctly.

Version history

	Version
	Changes
	OpenStack Version

	1.0
	
	Initial Dynamic UI implementation

	Icehouse

	2.0
	
	instance field support is dropped

	New Application section that describes engine object model

	New Templates section for keeping reusable pieces of Object

	Juno, Kilo

	2.1
	
	New network field provides a selection of networks and
their subnetworks as a dropdown populated with those which are
available to the current tenant.

	Liberty

	2.2
	
	Now application name is added automatically to the last
service form. It is needed for a user to recognize one
created application from another in the UI. Previously all
application definitions contained the name property. So to
support backward compatibility, you need to manually remove
name field from class properties.

	Liberty

	2.3
	
	Now password field supports confirmInput flag and
validator overloading with single regexpValidator or
multiple validators attribute.

	Mitaka

	2.4
	
	Parameters and ParametersSource sections were added

	ref() YAQL function were added to Application DSL

	YAQL expressions can be used anywhere in the form definition

	choice control accepts choices in dictionary format

	Ocata

Application

The Application section describes an application object model.
The model is a dictionary (document) of application property values (inputs).
Property value might be of any JSON-serializable type (including lists and
maps). In addition the value can be of an object type (another application,
application component, list of components etc.). Object properties are
represented either by the object model of the component (i.e. dictionary) or
by an object ID (string) if the object was already defined elsewhere.
Each object definition (including the one in Application itself) must have a
special ? key called object header. This key holds object metadata most
important of which is the object type name. Thus the Application might look
like this:

Application:
 ?:
 type: "com.myCompany.myNamespace.MyClass"
 property1: "string property value"
 property2: 123
 property3:
 key1: value1
 key2: [1, false, null]
 property4:
 ?:
 type: "com.myCompany.myNamespace.MyComponent"
 property: value

However in most cases the values in object model should come from input fields
rather than being static as in example above. To achieve this, object model
values can also be of a YAQL <https://git.openstack.org/cgit/openstack/yaql/tree/README.rst>
expression type. With expressions language it becomes possible to retrieve
input control values, do some calculations and data transformations (queries).
Any YAML value that is not enclosed in quote marks and conforms to the YAQL
syntax is considered to be a YAQL expression. There is also an explicit
YAML tag for the YAQL expressions: !yaql.

So with the YAQL addition Application section might look like this:

Application:
 ?:
 type: "com.myCompany.myNamespace.MyClass"
 property1: $.formName.controlName
 property2: 100 + 20 + 3
 property3:
 !yaql "'KEY1'.toLower()'": !yaql "value1 + '1'"
 key2: [$parameter, not true]
 property4: null

When evaluating YAQL expressions $ is set to the forms data (list of
dictionaries with cleaned validated forms’ data) and templates and parameters
are available using $templateName ($parameterName) syntax. See below on
templates and parameters.

YAQL comes with hundreds of functions bundled. In addition to that there are
another four functions provided by murano dashboard:

	generateHostname(pattern, index) is used for a machine hostname template
generation. It accepts two arguments: name pattern (string) and index
(integer). If ‘#’ symbol is present in name pattern, it will be replaced
with the index provided. If pattern is an empty string, a random name will be
generated.

	repeat(template, times) is used to produce a list of data snippets, given
the template snippet (first argument) and number of times it should be
reproduced (second argument). Inside that template snippet current step can
be referenced as $index.

	name() returns current application name.

	ref(templateName [, parameterName] [, idOnly]) is used to generate object
definition from the template and then reference it several times in the
object model. This function evaluates template templateName and
fixes the result in parameters under parameterName key (or
templateName if the second parameter was omitted). Then it generates
object ID and places it into ?/id field. On the first use of
parameterName or if idOnly is false the function will return
the whole object structure. On subsequent calls or if idOnly is
true it will return the ID that was generated upon the first call.

Templates

It is often that application object model contains number of similar instances
of the same component/class. For example it might be list of servers for
multi-server application or list of nodes or list of components. For such cases
UI definition markup allow to give the repeated object model snippet a name
and then refer to it by the name in the application object model.
Such snippets are placed into Templates section:

Templates:
 primaryController:
 ?:
 type: "io.murano.windows.activeDirectory.PrimaryController"
 host:
 ?:
 type: "io.murano.windows.Host"
 adminPassword: $.appConfiguration.adminPassword
 name: generateHostname($.appConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage

 secondaryController:
 ?:
 type: "io.murano.windows.activeDirectory.SecondaryController"
 host:
 ?:
 type: "io.murano.windows.Host"
 adminPassword: $.appConfiguration.adminPassword
 name: generateHostname($.appConfiguration.unitNamingPattern, $index + 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage

Then the template can be inserted into application object model or to another
template using $templateName syntax. It is often case that it is used
together with repeat function to put several instances of template. In
this case templates may use of $index variable which will hold current
iteration number:

Application:
 ?:
 type: io.murano.windows.activeDirectory.ActiveDirectory
 primaryController: $primaryController
 secondaryControllers: repeat($secondaryController, $.appConfiguration.dcInstances - 1)

It is important to remember that templates are evaluated upon each access or
repeat() iteration. Thus if the template has some properties set to a
random or generated values they are going to be different for each instance
of the template.

Another use case for templates is when single object is referenced several
times within application object model:

Templates:
 instance:
 ?:
 type: "io.murano.resources.LinuxMuranoInstance"
 image: myImage
 flavor: "m1.small"

Application:
 ?:
 type: "com.example.MyApp"
 components:
 - ?:
 type: "com.example.MyComponentType1"
 instance: ref(instance)
 - ?:
 type: "com.example.MyComponentType2"
 instance: ref(instance)

In example above there are two components that uses the same server instance.
If this example had $instance instead of ref(instance) that would
be two unrelated servers based on the same template i.e. with the same image
and flavor, but not the same VM.

Parameters and ParametersSource

Parameters are values that are used to parametrize the UI form and/or
application object model. Parameters are put into Parameters section and
accessed using $parameterName syntax:

Parameters:
 param1: "Hello!"

Application:
 ?:
 type: "com.example.MyApp"
 stringProperty: $param1

Parameters are very similar to Templates with two differences:

	Parameter values are evaluated only once per application instance at the
very beginning whereas templates are evaluated on each access.

	Parameter values can be used to initialize UI control attributes (e.g.
initial text box value, list of choices for a drop down etc.)

However the most powerful feature about parameters is that their values
might be obtained from the application class. Here is how to do it:

	In one of the classes in the MuranoPL package (usually the main application
class define a static action method without arguments that returns a
dictionary of variables:

Name: "com.example.MyApp"
Methods:
 myMethod:
 Usage: Static
 Scope: Public
 Body:
 # arbitrary MuranoPL code can be used here
 Return:
 var1: value1
 var2: 123

	
	In UI definition file add

	ParametersSource: "com.example.MyApp.myMethod"

The class name may be omitted. In this case the dashboard will try to use
the type of Application object or package FQN for that purpose.

The values returned by the method are going to be merged into Parameters
section like if they were defined statically.

Forms

This section describes markup elements for defining forms, which are currently
rendered and validated with Django. Each form has a name, field definitions
(mandatory), and validator definitions (optionally).

Note that each form is split into 2 parts:

	input area - left side, where all the controls are located

	description area - right side, where descriptions of the controls are located

Each field should contain:

	name - system field name, could be any

	type - system field type

Currently supported options for type attribute are:

	string - text field (no inherent validations) with one-line text input

	boolean - boolean field, rendered as a checkbox

	text - same as string, but with a multi-line input

	integer - integer field with an appropriate validation, one-line text input

	choice - drop-down list of variants. Each variant has a display string that
is going to be displayed to the user and associated key that is going to be
a control value

	password - text field with validation for strong password, rendered as two
masked text inputs (second one is for password confirmation)

	clusterip - specific text field, used for entering cluster IP address
(validation for valid IP address syntax)

	databaselist - specific field, a list of databases (comma-separated list of
databases’ names, where each name has the following syntax first symbol
should be latin letter or underscore; subsequent symbols can be latin
letter, numeric, underscore, at the sign, number sign or dollar sign),
rendered as one-line text input

	image - specific field, used for filtering suitable images by image type
provided in murano metadata in glance properties.

	flavor - specific field, used for selection instance flavor from a list

	keypair - specific field, used for selecting a keypair from a list

	azone - specific field, used for selecting instance availability zone from
a list

	network - specific field, used to select a network and subnet from a list
of the ones available to the current user

	securitygroup - specific field, used for selecting a custom security group
to assign to the instance

	volume - specific field, used for selecting a volume or a volume snapshot
from a list of available volumes (and volume snapshots)

	any other value is considered to be a fully qualified name for some
Application package and is rendered as a pair of controls: one for selecting
already existing Applications of that type in an Environment, second - for
creating a new Application of that type and selecting it

Other arguments (and whether they are required or not) depends on a
field’s type and other attributes values. Most of them are standard Django
field attributes. The most common attributes are the following:

	label - name, that will be displayed in the form; defaults to name
being capitalized.

	description - description, that will be displayed in the description area.
Use YAML line folding character >- to keep the correct formatting during
data transferring.

	descriptionTitle - title of the description, defaults to label;
displayed in the description area

	hidden whether field should be visible or not in the input area.
Note that hidden field’s description will still be visible in the
descriptions area (if given). Hidden fields are used storing some data to be
used by other, visible fields.

	minLength, maxLength (for string fields) and minValue,
maxValue (for integer fields) are transparently translated into django
validation properties.

	choices - a choices for the choice control type. The format is
[["key1", "display value1"], ["key2", "display value2"]]. Starting from
version 2.4 this can also be passed as a
{key1: "display value1", key2: "display value2"}

	regexpValidator - regular expression to validate user input. Used with
string or password field.

	errorMessages - dictionary with optional ‘invalid’ and ‘required’ keys
that set up what message to show to the user in case of errors.

	validators is a list of dictionaries, each dictionary should at least
have expr key, under that key either some
YAQL [https://git.openstack.org/cgit/openstack/yaql/tree/README.rst]
expression is stored, either one-element dictionary with regexpValidator
key (and some regexp string as value).
Another possible key of a validator dictionary is message, and although
it is not required, it is highly desirable to specify it - otherwise, when
validator fails (i.e. regexp doesn’t match or YAQL expression evaluates to
false) no message will be shown. Note that field-level validators use YAQL
context different from all other attributes and section: here $ root object
is set to the value of field being validated (to make expressions shorter).

- name: someField
 type: string
 label: Domain Name
 validators:
 - expr:
 regexpValidator: '(^[^.]+$|^[^.]{1,15}\..*$)'
 message: >-
 NetBIOS name cannot be shorter than 1 symbol and
 longer than 15 symbols.
 - expr:
 regexpValidator: '(^[^.]+$|^[^.]*\.[^.]{2,63}.*$)'
 message: >-
 DNS host name cannot be shorter than 2 symbols and
 longer than 63 symbols.
 helpText: >-
 Just letters, numbers and dashes are allowed.
 A dot can be used to create subdomains

Using of regexpValidator and validators attributes with password
field was introduced in version 2.3. By default, password should have at
least 7 characters, 1 capital letter, 1 non-capital letter, 1 digit, and 1
special character. If you do not want password validation to be so strong,
you can override it by setting a custom validator or multiple validators for
password. For that add regexpValidator or validators to the password
field and specify custom regexp string as value, just like with any string
field.

Example

- name: password
 type: password
 label: Password
 descriptionTitle: Password
 description: >-
 Please, provide password for the application. Password should be
 5-50 characters long and consist of alphanumeric characters
 regexpValidator: '^[a-zA-Z0-9]{5,50}?$'

	confirmInput is a flag used only with password field and defaults to
true. If you decided to turn off automatic password field cloning, you
should set it to false. In this case password confirmation is not
required from a user.

	widgetMedia sets some custom CSS and JavaScript used for the field’s
widget rendering. Note, that files should be placed to Django static folder
in advance. Mostly they are used to do some client-side field
enabling/disabling, hiding/unhiding etc.

	requirements is used only with flavor field and prevents user to pick
unstable for a deployment flavor.
It allows to set minimum ram (in MBs), disk space (in GBs) or virtual CPU
quantity.

Example that shows how to hide items smaller than regular small flavor
in a flavor select field:

- name: flavor
 type: flavor
 label: Instance flavor
 requirements:
 min_disk: 20
 min_vcpus: 2
 min_memory_mb: 2048

	include_snapshots is used only with the volume field. True by default.
If True, the field list includes available volumes and volume snapshots.
If set to False, only available volumes are shown.

	include_subnets is used only with network field. True by default.
If True, the field list includes all the possible combinations of network
and subnet. E.g. if there are two available networks X and Y, and X has two
subnets A and B, while Y has a single subnet C, then the list will include 3
items: (X, A), (X, B), (Y, C). If set to False only network names will be
listed, without their subnets.

	filter is used only with network field. None by default. If set to a
regexp string, will be used to display only the networks with names matching
the given regexp.

	murano_networks is used only with network field. None by default. May
have values None, exclude or translate. Defines the handling of
networks which are created by murano.
Such networks usually have very long randomly generated names, and thus look
ugly when displayed in the list. If this value is set to exclude then these
networks are not shown in the list at all. If set to translate the
names of such networks are replaced by a string Network of %env_name%.

Note

This functionality is based on the simple string matching of the
network name prefix and the names of all the accessible murano
environments. If the environment is renamed after the initial deployment
this feature will not be able to properly translate or exclude its network
name.

	allow_auto is used only with network field. True by default. Defines if
the default value of the dropdown (labeled “Auto”) should be present in the
list. The default value is a tuple consisting of two None values. The logic
on how to treat this value is up to application developer. It is suggested to
use this field to indicate that the instance should join default environment
network. For use-cases where such behavior is not desired, this parameter
should be set to False.

Network field and its specific attributes (include_subnets, filter,
murano_networks, allow_auto) are available since version 2.1.
Before that, there was no way for the end user to select existing network in
the UI. The only way to change the default networking behavior was the usage
of networking.yaml file. It allows to override the networking setting at
the environment level, for all the murano environments of all the tenants.
Now you can simple add a network field to your form definition and provide
the ability to select the desired network for the specific application.

Example

- instanceConfiguration:
 fields:
 - name: network
 type: network
 label: Network
 description: Select a network to join. 'Auto' corresponds to a default environment's network.
 murano_networks: translate

Besides field-level validators, form-level validators also exist. They
use standard context for YAQL evaluation and are required when
there is a need to validate some form’s constraint across several
fields.

Example

Forms:
 - appConfiguration:
 fields:
 - name: dcInstances
 type: integer
 hidden: true
 initial: 1
 required: false
 maxLength: 15
 helpText: Optional field for a machine hostname template
 - name: unitNamingPattern
 type: string
 label: Instance Naming Pattern
 required: false
 maxLength: 64
 regexpValidator: '^[a-zA-Z][-_\w]*$'
 errorMessages:
 invalid: Just letters, numbers, underscores and hyphens are allowed.
 helpText: Just letters, numbers, underscores and hyphens are allowed.
 description: >-
 Specify a string that will be used in a hostname instance.
 Just A-Z, a-z, 0-9, dash, and underline are allowed.

 - instanceConfiguration:
 fields:
 - name: title
 type: string
 required: false
 hidden: true
 descriptionTitle: Instance Configuration
 description: Specify some instance parameters based on which service will be created.
 - name: flavor
 type: flavor
 label: Instance flavor
 description: >-
 Select a flavor registered in OpenStack. Consider that service performance
 depends on this parameter.
 required: false
 - name: osImage
 type: image
 imageType: windows
 label: Instance image
 description: >-
 Select valid image for a service. Image should already be prepared and
 registered in glance.
 - name: availabilityZone
 type: azone
 label: Availability zone
 description: Select an availability zone, where service will be installed.
 required: false

Control attributes might be initialized with a YAQL expression. However prior
to version 2.4 it only worked for forms other than the first. It was designed
to initialize controls with values input on the previous step. Starting with
version 2.4 this limitation was removed and it become possible to use
arbitrary YAQL expressions for any of control fields on any forms and use
parameter values as part of these expressions.

Murano package repository

Murano client and dashboard can install both packages and bundles of packages from murano repository. To do so you should set MURANO_REPO_URL settings in murano dashboard or MURANO_REPO_URL env variable for the CLI client, and use a respective command to import the package. These commands automatically import all the prerequisites required to install the application along with any images mentioned in the applications.

Setting up your own repository

	It is fairly easy to set up your own murano package repository. To do so you need a web server that would serve 3 directories:

	
	/apps/

	/bundles/

	/images/

When importing an application by name, the client appends any version info, if present to the application name, .zip file extension and searches for that file in the apps directory.

When importing a bundle by name, the client appends .bundle file extension to the bundle name and searches it in the bundles directory. A bundle file is a JSON or a YAML file with the following structure:

{"Packages":
 [
 {"Name": "com.example.ApacheHttpServer"},
 {"Version": "", "Name": "com.example.Nginx"},
 {"Version": "0.0.1", "Name": "com.example.Lighttpd"}
]
}

Glance images can be auto-imported by the client, when mentioned in images.lst inside the package. Please see Developing Murano Packages 101 for more information about package composition.
When importing images from the image.lst file, the client simply searches for a file with the same name as the name attribute of the image in the images directory of the repository.

Murano bundles

A bundle is a collection of packages. In the Community App Catalog, you can find
such bundles as container-based-apps, app-servers, and so on.
The packages in the Application Catalog are sorted by usage. You can import
bundles from the catalog using Dashboard or CLI. You can read about this in
Managing applications and Using CLI.
Specific information about bundle-import command can be found at
Murano command-line client.

Bundle structure

Bundle description is a JSON structure, that contains list of packages
in the bundle and bundle version. Here is the example:

{
 "Packages": [
 {
 "Name": "com.example.apache.ApacheHttpServer",
 "Version": ""
 },
 {
 "Name": "com.example.apache.Tomcat",
 "Version": ""
 }
],
 "Version": 1
}

Name is a required parameter and should contain package fully qualified name.
Version is not a mandatory parameter. Version for package entry specifies the
version of the package to look into Murano package repository.
If it is specified, murano client would look for a file with that version
specification in murano repository (for example com.example.MyApp.0.0.1.zip
for com.example.MyApp of version 0.0.1). If the version is omitted or left
blank client would search for com.example.MyApp.zip.

Create local bundle

However, you may need to create a local bundle. You may need it if you want to
setup your own Murano package repository. To create a new
bundle, perform the following steps:

	Navigate to the directory with the target packages.

	Create a .bundle file. List all the required packages in Packages
section. If needed, specify the bundle version in the Version section.

Migrating applications between releases

This document describes how a developer of murano application can update
existing packages to make them synchronized with all implemented features
and requirements.

	Migrate applications from Murano v0.5 to Stable/Juno

	Migrate applications to Stable/Kilo

	Migrate applications to Stable/Liberty

	Migrate applications to Stable/Newton

Migrate applications from Murano v0.5 to Stable/Juno

Applications created for murano v0.5, unfortunately, are not supported in Murano
stable/juno. This document provides the application code changes required for
compatibility with the stable/juno murano version.

Rename ‘Workflow’ to ‘Methods’

In stable/juno the name of section containing class methods is renamed to
Methods, as the latter is more OOP and doesn’t cause confusion with Mistral. So,
you need to change it in app.name/Classes in all classes describing workflow
of your app.

For example:

Workflow:
 deploy:
 Body:
 - $._environment.reporter.report($this, 'Creating VM')

Should be changed to:

Methods:
 deploy:
 Body:
 - $._environment.reporter.report($this, 'Creating VM')

Change the Instance type in the UI definition ‘Application’ section

The Instance class was too generic and contained some dirty workarounds to
differently handle Windows and Linux images, to bootstrap an instance in a
number of ways, etc. To solve these problems more classes were added to the
Instance inheritance hierarchy.

Now, base Instance class is abstract and agnostic of the desired OS and agent
type. It is inherited by two classes: LinuxInstance and WindowsInstance.

	LinuxInstance adds a default security rule for Linux, opening a standard
SSH port;

	WindowsInstance adds a default security rule for Windows, opening an RDP
port. At the same time WindowsInstance prepares a user-data allowing to use
Murano v1 agent.

LinuxInstance is inherited by two other classes, having different software
config method:

	LinuxMuranoInstance adds a user-data preparation to configure Murano
v2 agent;

	LinuxUDInstance adds a custom user-data field allowing the services to
supply their own user data.

You need to specify the instance type which is required by your app. It
specifies a field in UI, where user can select an image matched to the instance
type. This change must be added to UI form definition in app.name/UI/ui.yaml.

For example, if you are going to install your application on Ubuntu, you need to
change:

Application:
 ?:
 instance:
 ?:
 type: io.murano.resources.Instance

to:

Application:
 ?:
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance

Migrate applications to Stable/Kilo

In Kilo, there are no breaking changes that affect backward compatibility.
But there are two new features which you can use since Kilo.

1. Pluggable Pythonic classes for murano

Now you can create plug-ins for MuranoPL. A plug-in (extension) is an
independent Python package implementing functionality which you want
to add to the workflow of your application.

For a demo application demonstrating the usage of plug-ins, see the
murano/contrib/plugins/murano_exampleplugin folder.

The application consist of the following components:

	An ImageValidatorMixin class that inherits the generic instance class
(io.murano.resources.Instance) and adds a method capable of validating
the instance image for having an appropriate murano metadata type. This
class may be used as a mixin when added to inheritance hierarchy of
concrete instance classes.

	A concrete class called DemoInstance that inherits from
io.murano.resources.LinuxMuranoInstance and ImageValidatorMixin
to add the image validation logic to a standard, murano-enabled and
Linux-based instance.

	An application that deploys a single VM using the DemoInstance
class if the tag on the user-supplied image matches the user-supplied
constant.

The ImageValidatorMixin demonstrates the instantiation of plug-in provided
class and its usage, as well as handling of exception which may be thrown if
the plug-in is not installed in the environment.

2. Murano mistral integration

The core library has a new system class for mistral client that allows to call
Mistral APIs from the murano application model.

The system class allows you to:

	Upload a mistral workflow to mistral.

	Trigger the mistral workflow that is already deployed, wait for completion
and return the execution output.

To use this feature, add some mistral workflow to Resources folder
of your package. For example, create file TestEcho_MistralWorkflow.yaml:

version: '2.0'

test_echo:
 type: direct
 input:
 - input_1
 output:
 out_1: <% $.task1_output_1 %>
 out_2: <% $.task2_output_2 %>
 out_3: <% $.input_1 %>
 tasks:
 my_echo_test:
 action: std.echo output='just a string'
 publish:
 task1_output_1: 'task1_output_1_value'
 task1_output_2: 'task1_output_2_value'
 on-success:
 - my_echo_test_2

 my_echo_test_2:
 action: std.echo output='just a string'
 publish:
 task2_output_1: 'task2_output_1_value'
 task2_output_2: 'task2_output_2_value'

And provide workflow to use the mistral client:

Namespaces:
=: io.murano.apps.test
std: io.murano
sys: io.murano.system

Name: MistralShowcaseApp

Extends: std:Application

Properties:
 name:
 Contract: $.string().notNull()

 mistralClient:
 Contract: $.class(sys:MistralClient)
 Usage: Runtime

Methods:
 initialize:
 Body:
 - $this.mistralClient: new(sys:MistralClient)

 deploy:
 Body:
 - $resources: new('io.murano.system.Resources')
 - $workflow: $resources.string('TestEcho_MistralWorkflow.yaml')
 - $.mistralClient.upload(definition => $workflow)
 - $output: $.mistralClient.run(name => 'test_echo', inputs => dict(input_1 => input_1_value))
 - $this.find(std:Environment).reporter.report($this, $output.get('out_3'))

Migrate applications to Stable/Liberty

In Liberty a number of useful features that can be used by developers creating
their murano applications were implemented. This document describes these
features and steps required to include them to new apps.

1. Versioning

Package version

Now murano packages have a new optional attribute in their manifest called
Version - a standard SemVer format version string. All MuranoPL classes have
the version of the package they contained in.
To specify the version of your package, add a new section to the manifest file:

Version: 0.1.0

If no version specified, the package version will be equal to 0.0.0.

Package requirements

There are cases when packages may require other packages for their work.
Now you need to list such packages in the Require section of the manifest
file:

Require:
 package1_FQN: version_spec_1
 ...
 packageN_FQN: version_spec_N

version_spec here denotes the allowed version range. It can be either in
semantic_version specification pip-like format or as partial version string.
If you do not want to specify the package version, leave this value empty:

Require:
 package1_FQN: '>=0.0.3'
 package2_FQN:

In this case, the last dependency 0.x.y is used.

Note

All packages depend on the io.murano package (core library). If you do not
specify this requirement in the list (or the list is empty or even there is
no Require key in package manifest), then dependency io.murano: 0 will
be automatically added.

Object version

Now you can specify the version of objects in UI definition when your
application requires specific version of some class. To do this, add new key
classVersion to section ? describing object:

?:
 type: io.test.apps.TestApp
 classVersion: 0.0.1

classVersion of all classes included to package equals Version of this
package.

2. YAQL

In Liberty, murano was updated to use yaql 1.0.0.
The new version of YAQL allows you to use a number of new functions and
features that help to increase the speed of developing new applications.

Note

Usage of these features makes your applications incompatible with
older versions of murano.

Also, in Liberty you can change Format in the manifest of package from
1.0 to 1.1 or 1.2.

	1.0 - supported by all versions of murano.

	1.1 - supported by Liberty+. Specify it, if you want to use features
from yaql 0.2 and yaql 1.0.0 at the same time in your application.

	1.2 - supported by Liberty+. A number of features from yaql 0.2 do not
work with this format (see the list below). We recommend you to use it for
new applications where compatibility with Kilo is not required.

Some examples of yaql 0.2 features that are not compatible with the 1.2 format

	Several functions now cannot be called as MuranoObject methods:
id(), cast(), super(), psuper(), type().

	Now you do not have the ability to compare non-comparable types.
For example “string != false”

	Dicts are not iterable now, so you cannot do this:
If: $key in $dict. Use $key in $dict.keys()
or $v in $dict.values()

	Tuples are not available. => always means keyword argument.

3. Simple software configuration

Previously, you always had to create execution plans even when some short
scripts had to be executed on a VM. This process included creating a template
file, creating a script, and describing the sending of the execution plan to
the murano agent.

Now you can use a new class io.murano.configuration.Linux from murano
core-library. This allows sending short commands to the VM and putting files
from the Resources folder of packages to some path on the VM without the
need of creating execution plans.

To use this feature you need to:

	Declare a namespace (for convenience)

Namespaces:
 conf: io.murano.configuration
 ...

	Create object of io.murano.configuration.Linux class in workflow of
your application:

$linux: new(conf:Linux)

	Run one of the two feature methods: runCommand or putFile:

first argument is agent of instance, second - your command
$linux.runCommand($.instance.agent, 'service apache2 restart')

or:

getting content of file from 'Resources' folder
- $resources: new(sys:Resources)
- $fileContent: $resources.string('your_file.name')
put this content to some directory on VM
- $linux.putFile($.instance.agent, $fileContent, '/tmp/your_file.name')

Note

At the moment, you can use this feature only if your app requires an
instance of LinuxMuranoInstance type.

4. UI network selection element

Since Liberty, you can provide users with the ability to choose where to join
their VM: to a new network created during the deployment, or to an already
existing network.
Dynamic UI now has a new type of field - NetworkChoiseField. This field
provides a selection of networks and their subnetworks as a dropdown populated
with those which are available to the current project (tenant).

To use this feature, you should make the following updates in the Dynamic UI of
an application:

	Add network field:

fields:
 - name: network
 type: network
 label: Network
 description: Select a network to join. 'Auto' corresponds to a default environment's network.
 required: false
 murano_networks: translate

To see the full list of the network field arguments, refer to the UI
forms specification.

	Add template:

Templates:
 customJoinNet:
 - ?:
 type: io.murano.resources.ExistingNeutronNetwork
 internalNetworkName: $.instanceConfiguration.network[0]
 internalSubnetworkName: $.instanceConfiguration.network[1]

	Add declaration of networks instance property:

Application:
 ?:
 type: com.example.exampleApp
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 networks:
 useEnvironmentNetwork: $.instanceConfiguration.network[0]=null
 useFlatNetwork: false
 customNetworks: switch($.instanceConfiguration.network[0], $=null=>list(), $!=null=>$customJoinNet)

For more details about this feature, see use-cases

Note

To use this feature, the version of UI definition must be 2.1+

5. Remove name field from fields and object model in dynamic UI

Previously, each class of an application had a name property. It had no
built-in predefined meaning for MuranoPL classes and mostly used for dynamic UI
purposes.

Now you can create your applications without this property in classes and
without a corresponding field in UI definitions. The field for app name will be
automatically generated on the last management form before start of deployment.
Bonus of deleting this - to remove unused property from muranopl class that is
needed for dashboard only.

So, to update existing application developer should make 3 steps:

	remove name field and property declaration from UI definition;

	remove name property from class of application and make sure that it is
not used anywhere in workflow

	set version of UI definition to 2.2 or higher

Migrate applications to Stable/Newton

In Newton a number of useful features that can be used by developers creating
their murano applications were implemented. Also some changes are not backward
compatible. This document describes these features, how they may be included
into the new apps and what benefits the apps may gain.

1. New syntax for the action declaration

Previously, for declaring action in MuranoPL application, following syntax was
used:

methodName:
 Usage: Action

This syntax is deprecated now for packages with FormatVersion starting from
1.4, and you should use the Scope attribute:

methodName:
 Scope: Public

For more information about actions in MuranoPL, see Murano actions.

2. Usage of static methods as Action

Now you can declare static method as action with Scope and Usage
attributes

methodName:
 Scope: Public
 Usage: Static

For more information about static methods in MuranoPL, see Static methods and properties.

3. Template contract support

New contract function template was introduced. template works
similar to the class in regards to the data validation but does not
instantiate objects. The template is just a dictionary with object model
representation of the object.

It is useful when you do not necessarily need to pass the actual object as a
property or as a method argument and use it right away, but rather to create
new objects of this type in runtime from the given template. It is especially
beneficial for resources replication or situations when object creation
depends on some conditions.

Objects that are assigned to the property or argument with template
contract will be automatically converted to their object model
representation.

4. Multi-region support

Starting from Newton release cloud resource classes (instances, networks,
volumes) can be explicitly put into OpenStack regions other than environment
default. Thus it becomes possible to have applications that make use of more
than one region including stretching/bursting to other regions.

Each resource class has got new regionName property which controls its
placement. If no value is provided, default region for environment is used.
Applications wanting to take advantage of multi-region support should access
security manager and Heat stacks from regions of their resources rather than
from the environment.

Regions need to be configured before they can be used. Please refer to
documentation on how to do this: Multi-region application.

Changes in the core library

io.murano.Environment class contains regions property with list of
io.murano.CloudRegion objects. Heat stack, networks and agent listener are
now owned by io.murano.CloudRegion instances rather than by Environment.

You can not get io.murano.resources.Network objects from
Enviromnent::defaultNetworks now. This property only contains templates for
io.murano.CloudRegion default networks.

The proper way to retrieve io.murano.resources.Network object is now the
following:

$region: $instance.getRegion()
$networks: $region.defaultNetworks

5. Changes to property validation

string() contract no longer converts to string anything but scalar values.

6. Garbage collection

New approach to resource deallocation was introduced.

Previously murano used to load Objects and ObjectsCopy sections of the
JSON object model independently which cause for objects that were not deleted
between deployments to instantiate twice. If deleted object were to cause any
changes to such alive objects they were made to the objects loaded from
ObjectsCopy and immediately discarded before the deployment.
Now this behaviour is changed and there is no more duplicates of the same object.

Applications can also make use of the new features. Now it is possible to
perform on-demand destruction of the unreferenced MuranoPL objects during the
deployment from the application code.
The io.murano.system.GC.GarbageCollector.collect() static method may be
used for that.

Also objects obtained ability to set up destruction dependencies to the
other objects. Destruction dependencies allow to define the preferable order
of objects destruction and let objects be aware of other objects destruction,
react to this event, including the ability to prevent other objects from
being destroyed.

Please refer to the documentation on how to use the garbage collector:
garbage_collection.

Application unit tests

Murano applications are written in MuranoPL.
To make the development of applications easier and enable application
testing, a special framework was created. So it is possible to add
unit tests to an application package and check if the application is in
actual state. Also, application deployment can be simulated with unit tests,
so you do not need to run the murano engine.

A separate service that is called murano-test-runner is used to run
MuranoPL unit tests.

All application test cases should be:

	Specified in the MuranoPL class, inherited from
io.murano.test.testFixture [https://git.openstack.org/cgit/openstack/murano/tree/murano/engine/system/test_fixture.py]

This class supports loading object model with the corresponding load(json)
function. Also it contains a minimal set of assertions such as
assertEqual and etc.

Note, that test class has the following reserved methods are:

	initialize is executed once, like in any other murano application

	setUp is executed before each test case

	tearDown is executed after each test case

	Named with test prefix

usage: murano-test-runner [-h] [--config-file CONFIG_FILE]
 [--os-auth-url OS_AUTH_URL]
 [--os-username OS_USERNAME]
 [--os-password OS_PASSWORD]
 [--os-project-name OS_PROJECT_NAME]
 [-l [</path1, /path2> [</path1, /path2> ...]]] [-v]
 [--version]
 <PACKAGE_FQN>
 [<testMethod1, className.testMethod2> [<testMethod1, className.testMethod2> ...]]

positional arguments:
 <PACKAGE_FQN>
 Full name of application package that is going to be
 tested
 <testMethod1, className.testMethod2>
 List of method names to be tested

optional arguments:
 -h, --help show this help message and exit
 --config-file CONFIG_FILE
 Path to the murano config
 --os-auth-url OS_AUTH_URL
 Defaults to env[OS_AUTH_URL]
 --os-username OS_USERNAME
 Defaults to env[OS_USERNAME]
 --os-password OS_PASSWORD
 Defaults to env[OS_PASSWORD]
 --os-project-name OS_PROJECT_NAME
 Defaults to env[OS_PROJECT_NAME]
 -l [</path1 /path2> [</path1 /path2> ...]], --load_packages_from [</path1 /path2> [</path1 /path2> ...]]
 Directory to search packages from. Will be used instead of
 directories, provided in the same option in murano configuration file.
 -v, --verbose increase output verbosity
 --version show program's version number and exit

The fully qualified name of a package is required to specify the test location.
It can be an application package that contains one or several classes with all
the test cases, or a separate package. You can specify a class name to
execute all the tests located in it, or specify a particular test case name.

Authorization parameters can be provided in the murano configuration file, or
with higher priority -os- parameters.

Consider the following example of test execution for the Tomcat application.
Tests are located in the same package with application, but in a separate class
called io.murano.test.TomcatTest. It contains testDeploy1 and
testDeploy2 test cases.
The application package is located in the /package/location/directory
(murano-apps repository e.g). As the result of the following command, both
test cases from the specified package and class will be executed.

murano-test-runner io.murano.apps.apache.Tomcat io.murano.test.TomcatTest -l /package/location/directory /io.murano/location -v

The following command runs a single testDeploy1 test case from the
application package.

murano-test-runner io.murano.apps.apache.Tomcat io.murano.test.TomcatTest.testDeploy1

The main purpose of MuranoPL unit test framework is to enable mocking.
Special YAQL functions are registered for that:

	def inject(target, target_method, mock_object, mock_name)

	inject to set up mock for class or object, where mock definition is a name of the test class method

	def inject(target, target_method, yaql_expr)

	inject to set up mock for a class or object, where mock definition is a YAQL expression

Parameters description:

	target

	MuranoPL class name (namespaces can be used or full class name
in quotes) or MuranoPL object

	target_method

	Method name to mock in target

	mock_object

	Object, where mock definition is contained

	mock_name

	Name of method, where mock definition is contained

	yaql_expr

	YAQL expression, parameters are allowed

So the user is allowed to specify mock functions in the following ways:

	Specify a particular method name

	Provide a YAQL expression

Consider how the following functions may be used in the MuranoPL class with
unit tests:

Namespaces:
 =: io.murano.test
 sys: io.murano.system

Extends: TestFixture

Name: TomcatTest

Methods:
 initialize:
 Body:
 # Object model can be loaded from JSON file, or provided
 # directly in MuranoPL code as a YAML insertion.
 - $.appJson: new(sys:Resources).json('tomcat-for-mock.json')
 - $.heatOutput: new(sys:Resources).json('output.json')
 - $.log: logger('test')
 - $.agentCallCount: 0

 # Mock method to replace the original one
 agentMock:
 Arguments:
 - template:
 Contract: $
 - resources:
 Contract: $
 - timeout:
 Contract: $
 Default: null
 Body:
 - $.log.info('Mocking murano agent')
 - $.assertEqual('Deploy Tomcat', $template.Name)
 - $.agentCallCount: $.agentCallCount + 1

 # Mock method, that returns predefined heat stack output
 getStackOut:
 Body:
 - $.log.info('Mocking heat stack')
 - Return: $.heatOutput

 testDeploy1:
 Body:
 # Loading object model
 - $.env: $this.load($.appJson)

 # Set up mock for the push method of *io.murano.system.HeatStack* class
 - inject(sys:HeatStack, push, $.heatOutput)

 # Set up mock with YAQL function
 - inject($.env.stack, output, $.heatOutput)

 # Set up mock for the concrete object with mock method name
 - inject('io.murano.system.Agent', call, $this, agentMock)

 # Mocks will be called instead of original function during the deployment
 - $.env.deploy()

 # Check, that mock worked correctly
 - $.assertEqual(1, $.agentCallCount)

 testDeploy2:
 Body:
 - inject(sys:HeatStack, push, $this, getStackOut)
 - inject(sys:HeatStack, output, $this, getStackOut)

 # Mock is defined with YAQL function and it will print the original variable (agent template)
 - inject(sys:Agent, call, withOriginal(t => $template) -> $.log.info('{0}', $t))

 - $.env: $this.load($.appJson)
 - $.env.deploy()

 - $isDeployed: $.env.applications[0].getAttr(deployed, false, 'com.example.apache.Tomcat')
 - $.assertEqual(true, $isDeployed)

Provided methods are test cases for the Tomcat application. Object model and
heat stack output are predefined and located in the package Resources
directory. By changing some object model or heat stack parameters, different
cases may be tested without a real deployment. Note, that some asserts are used
in those example. The first one is checked, that agent call function was called
only once as needed. And assert from the second test case checks for a variable
value at the end of the application deployment.

Test cases examples can be found in TomcatTest.yaml class of the
Apache Tomcat application located at murano-apps repository [https://git.openstack.org/cgit/openstack/murano-apps/tree/Tomcat/package/Classes/TomcatTest.yaml].
You can run test cases with the commands provided above.

Cinder volume support

Cinder volume is a block storage service for OpenStack, which represents a
detachable device, similar to a USB hard drive. You can attach a volume to
only one instance. In murano, it is possible to work with Cinder volumes
in several ways:

	Attaching Cinder volumes to murano instance

	Booting from Cinder volume

Below both ways are considered with ApacheHttpServer application as an
example.

For more information about Cinder volumes, see
Manage Cinder volumes [http://docs.openstack.org/user-guide/common/cli_manage_volumes.html].

Attaching Cinder volumes

Several volumes can be attached to the murano instance. Consider an example
that shows how to attach a created volume to the instance (next, in the
Booting from Cinder volume section, we are going to boot from a volume
created by us).

Example

	In the OpenStack dashboard, go to Volumes to create a volume.

	Modify the ui.yaml file:

....

Application:

 instance:

 volumes:
 $.volumeConfiguration.volumePath:
 ?:
 type: io.murano.resources.ExistingCinderVolume
 openstackId: $.volumeConfiguration.volumeID

An existing Cinder volume can be initialized with its openstackId and can
be attached with its volumePath. These parameters come here from
modified Forms section of the ui.yaml file:

....

Forms:
 - appConfiguration:

 - instanceConfiguration:

 - volumeConfiguration:
 fields:
 - name: volumeID
 type: string
 label: Existing volume ID
 description: Put in existing volume openstackID
 required: true
 - name: volumePath
 type: string
 label: Path
 description: Put in volume path to be mounted
 required: true

Therefore, create a ZIP archive of the built package and upload it to murano.
Attach created application to the environment. Enter its openstackId (which
can be found in OpenStack dashboard) and path for mounting. For example, you
can fill the latter with /dev/vdb value.

After the application is deployed, verify that the volume is attached to the
instance in the OpenStack dashboard Volumes tab. Alternatively,
see the topology of the Heat Stack.

Booting from Cinder volume

You can create a volume from an existing image. The example below shows how to
create a volume from an image and use the volume to boot an instance.

Example

It is possible to create a volume through the Heat template, instead of
the OpenStack dashboard. For this, modify the ui.yaml file:

....

Templates:
 customJoinNet:

 bootVolumes:
 - volume:
 ?:
 type: io.murano.resources.CinderVolume
 size: $.instanceConfiguration.volSize
 sourceImage: $.instanceConfiguration.osImage
 bootIndex: 0
 deviceName: vda
 deviceType: disk
....

Application:

 instance:

 blockDevices: $bootVolumes

....

The example above shows that the Templates section now has a
bootVolumes field, which is stored in the changed Application
section.
Pay attention that image property should be deleted from
Application to avoid defining both image and volume to boot.
The size and sourceImage properties come in Templates from the
changed Forms section of the ui.yaml file:

....

Forms:
 - appConfiguration:

 - instanceConfiguration:
 fields:

 - name: volSize
 type: integer
 label: Size of volume
 required: true
 description: >-
 Specify volume size which is going to be created from image

After sending this package to murano you can boot your instance from the
volume by chosen image.

Multi-region application

Since Newton release, Murano supports multi-region application deployment.
All MuranoPL resource classes are inherited from the
io.murano.CloudResource class.
An application developer can set a custom region for CloudResource
subclasses deployment.

Set a region for resources

To set a region for resources:

	Specify a region for CloudResource subclasses deployment
through the regionName property. For example:

Application:
 ?:
 type: com.example.apache.ApacheHttpServer
 enablePHP: $.appConfiguration.enablePHP

 ...

 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 regionName: 'CustomRegion'

 ...

	Retrieve io.murano.CloudRegion objects:

$region: $.instance.getRegion()
$regionName: $region.name
$regionLocalStack: $region.stack
$regionDefaultNetworks: $region.defaultNetworks

As a result, all region-local properties are moved from the io.murano.Environment
class to the new Class: CloudRegion class.
For backward compatibility, the io.murano.Environment class stores
region-specific properties of default region, except the defaultNetworks
in its own properties.
The Environment::defaultNetworks property contains templates for
the CloudRegion::defaultNetworks property.

Through current UI, you cannot select networks, flavor, images
and availability zone from a non-default region.
We suggest using regular text fields to specify region-local resources.

Networking and multi-region applications

By default, each region has its own separate network.
To ensure connectivity between the networks, create and configure networks in regions
before deploying the application and use io.murano.resources.ExistingNeutronNetwork
to connect the instance to an existing network.
Example:

Application:
 ?:
 type: application.fully.qualified.Name

 ...

 instance_in_region1:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 regionName: 'CustomRegion1'
 networks:
 useEnvironmentNetwork: false
 useFlatNetwork: false
 customNetworks:
 - ?:
 type: io.murano.resources.ExistingNeutronNetwork
 regionName: 'CustomRegion1'
 internalNetworkName: 'internalNetworkNameInCustomRegion1'
 internalSubnetworkName: 'internalSubNetNameInCustomRegion1'

 instance_in_region2:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 regionName: 'CustomRegion2'
 networks:
 useEnvironmentNetwork: false
 useFlatNetwork: false
 customNetworks:
 - ?:
 type: io.murano.resources.ExistingNeutronNetwork
 regionName: 'CustomRegion2'
 internalNetworkName: 'internalNetworkNameInCustomRegion2'
 internalSubnetworkName: 'internalSubNetNameInCustomRegion2'

 ...

Also, you can configure networks with the same name and use a template
for the region networks.
That is, describe io.murano.resources.ExistingNeutronNetwork only once
and assign it to the Environment::defaultNetworks::environment property.
The environment will create Network objects for regions from the
ExistingNeutronNetwork template.
Example:

OS_REGION_NAME="RegionOne" openstack network create <NETWORK-NAME>
OS_REGION_NAME="RegionTwo" openstack network create <NETWORK-NAME>

configure subnets
#...

add ExistingNeutronNetwork to environment object model
murano environment-create --join-net-id <NETWORK-NAME> <ENV_NAME>

also it is possible to specify subnet from <NETWORK-NAME>
murano environment-create --join-net-id <NETWORK-NAME> --join-subnet-id <SUBNET_NAME> <ENV_NAME>

Additionally, consider the [networking] section in the configuration
file.
Currently, [networking] settings are common for all regions.

[networking]

external_network = %EXTERNAL_NETWORK_NAME%
router_name = %MURANO_ROUTER_NAME%
create_router = true

If you choose an automatic neutron configuration, configure the external
network with identical names in all regions.
If you disable the automatic router creation, create routers with
identical names in all regions.
Also, the default_dns address must be reachable from all created networks.

Note

To use regions, first configure them as described in Support for OpenStack regions.

Examples

	Application name
	Description

	
Zabbix Agent [https://github.com/openstack/murano-apps/tree/master/ZabbixAgent/package]

	Zabbix Agent is a simple application. It doesn’t deploy a VM by itself,
but is installed on a specific VM that may contain any other
applications. This VM is tracked by Zabbix and by its configuration.

So Murano performs the Zabbix agent configuration based on the user
input. The user chooses the way of instance tracking - HTTP or ICMP that may
perform some modifications in the application package.

It is worth noting that application scripts are written in Python, not
in Bash as usual. This application does not work without Zabbix server
application since it’s a required property, determined in the
application definition.

	
Zabbix Server [https://github.com/openstack/murano-apps/tree/master/ZabbixServer/package]

	Zabbix Server application interacts with Zabbix Agent by calling its
setUpAgent method and providing information about itself: IP and hostname
of VM on which the server is installed.

Server installs MySQL database and requests database name, password and
some other parameters from the user.

	
Docker Crate [https://github.com/openstack/murano-apps/tree/master/Docker/Applications/Crate/package]

	This is a good example on how difficult logic may be simplified with
the inheritance that is supported by MuranoPL. Definition of this app is
simple, but the opportunity it provides is fantastic.

Crate is a distributed database, in the Murano Application catalog it
looks like a regular application. It may be deployed on Google Kubernetes
or regular Docker server. The user picks the desired option while filling in
the form since these options are set in the UI definition. The form field
has a list of possible options:

...
type:
- com.mirantis.docker.kubernetes.KubernetesPod
- com.mirantis.docker.DockerStandaloneHost

Information about the application itself (docker image and port that is
needed to be opened) is contained in the getContainer method. All other
actions for the application configuration are located at the
DockerStandaloneHost definition and its dependencies. Note that this
application doesn’t have a filename:Resources folder at all since the
installation is made by Docker itself.

Use-cases

Performing application interconnections

Murano can handle application interconnections installed on virtual machines.
The decision of how to combine applications is made by the author of
an application.

To illustrate the way such interconnection can be configured,
let’s analyze the mechanisms applied in WordPress application, which
uses MySql.

MySql is a very popular database and can be used in quite a number of various
applications. Instead of the creation of a database inside definition of the
WordPress application, it calls the methods from the MySQL class. At the same
time MySQL remains an independent application.

MySql has a number of methods:

	deploy

	createDatabase

	createUser

	assignUser

	getConnectionString

In the com.example.WordPress class definition the database property is a
contact for the com.example.databases.MySql class. So, the database
configuration methods can be called with the parameters passed by the user
in the main method:

- $.database.createDatabase($.dbName)
- $.database.createUser($.dbUser, $.dbPassword)
- $.database.assignUser($.dbUser, $.dbName)

Any other methods of any other class can be invoked the same way to
make the proposal application installation algorithm clear and
constructive. Also, it allows not to duplicate the code in new applications.

Abstract dependencies between applications

In the example above it is also possible to specify a generic class in the
contract com.example.databases.SqlDatabase instead of
com.example.databases.MySql. It means that an object of any class inherited
from com.example.databases.SqlDatabase can be passed to a parameter. In
this case you should also use this generic class as a type for a field in
the file ui.yaml:

Forms:
 - appConfiguration:
 fields:
 - name: database
 type: com.example.databases.SqlDatabase
 label: Database Server
 description: >-
 Select a database server to host the application`s database

After that you can choose any database package in a drop-down box.
The last place, which should be changed in the WordPress package to enable this
feature, is manifest file. It should contain the full name of SQL Library
package and optionally packages inherited from SQL library if you want them to
be downloaded as dependencies. For example:

Require:
 com.example.databases:
 com.example.databases.MySql:
 com.example.databases.PostgreSql:

Note

To use this feature you have to enable Glare as a storage for your packages
and a version of your murano-dashboard should be not older than newton.

Using application already installed on the image

Suppose you have everything already prepared on image. And you want to share this
image with others. This problem can be solved in several ways.

Let’s use the
HDPSandbox [https://github.com/openstack/murano-apps/tree/master/HDPSandbox/package]
application to illustrate how this can be done with Murano.

Note

An image may not contain murano-agent at all.

Prepare an application package of the structure:

|_ Classes
| |_ HDPSandbox.yaml
|
|_ UI
| |_ ui.yaml
|
|_ logo.png

Note

The Resources folder is not included in the package since the image
contains everything that user expects. So no extra instructions are needed
to be executed on murano-agent.

UI is provided for specifying the application name, which is used for the application
recognition in logging. And what is more, it contains the image name as a deployment
instruction template (object model) in the Application section:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	Application:
?:
 type: com.example.HDPSandbox
name: $.appConfiguration.name
instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: generateHostname($.instanceConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 image: 'hdp-sandbox'
 assignFloatingIp: true

Moreover, the unsupported flavors can be specified here, so that the user can
select only from the valid ones. Provide the requirements in the
corresponding section to do this:

requirements:
 min_disk: 50 (Gb)
 min_memory_mb: 4096 (Mb)
 min_vcpus: 1

After the UI form creation, and the HDPSandbox application deployment,
the VM with the predefined image is spawned. Such type of applications may
interact with regular applications. Thus, if you have an image with Puppet,
you can call the deploy method of the Puppet application and then puppet
manifests or any shell scripts on the freshly spawned VM.

The presence of the logo.png should never be underestimated, since it helps to make
your application recognizable among other applications included in the catalog.

Interacting with non-OpenStack services

This section tells about the interaction between an application and any non-OpenStack
services, that have an API.

External load-balancer

Suppose, you have powerful load-balancer on a real server. And you want to run
the application on an OpenStack VM. Murano can set up new applications to be managed
by that external load-balancer (LB). Let’s go into more details.

To implement this case the following apps are used:

	LbApp: its class methods call LB API

	WebApp: runs on the real LB

Several instances of WebApp are deployed with each of them calling
two methods:

- $.loadBalancer.createPool()
- $.loadBalancer.addMember($instance)
where $.loadBalancer is an instance of the LbApp class

The first method creates a pool and associates it with a virtual server.
This happens once only. The second one registers a member in the newly created pool.

It is also possible to perform other modifications to the LB configuration,
which are only restricted by the LB API functionality.

So, you need to specify the maximum instance number in the UI form related to the
WebApp application. All of them are subsequently added to the LB pool.
After the deployment, the LB virtual IP, by which an application is accessible,
is displayed.

Configuring Network Access for VMs

By default, each VM instance deployed by io.murano.resources.Instance class
or its descendants joins an environment’s default network. This network gets
created when the Environment is deployed for the first time, a subnet is
created in it and is uplinked to a router which is detected automatically based
on its name.

This behavior may be overridden in two different ways.

Using existing network as environment’s default

This option is available for users when they create a new environment in the
Dashboard. A dropdown control is displayed next to the input field prompting
for the name of environment. By default this control provides to create a new
network, but the user may opt to choose some already existing network to be the
default for the environment being created. If the network has more than one
subnet, the list will include all the available options with their CIDRs
shown. The selected network will be used as environment’s default, so no new
network will be created.

Note

Murano does not check the configuration or topology of the network selected
this way. It is up to the user to ensure that the network is uplinked to some
external network via a router - otherwise the murano engine will not be able
to communicate with the agents on the deployed VMs. If the Applications being
deployed require internet connectivity it is up to the user to ensure that
this net provides it, than DNS nameservers are set and accessible etc.

Modifying the App UI to prompt user for network

The application package may be designed to ask user about the network they want
to use for the VMs deployed by this particular application. This allows to
override the default environment’s network setting regardless of its value.

To do this, application developer has to include a network field into the
Dynamic UI definition of the app. The value returned by this field is a tuple
of network_id and a subnet_id. This values may be passed as the
input properties for io.murano.resources.ExistingNeutronNetwork object
which may be in its turn passed to an instance of
io.murano.resources.Instance as its network configuration.

The UI definition may look like this:

Templates:
 customJoinNet:
 - ?:
 type: io.murano.resources.ExistingNeutronNetwork
 internalNetworkName: $.instanceConfiguration.network[0]
 internalSubnetworkName: $.instanceConfiguration.network[1]
Application:
 ?:
 type: com.example.someApplicationName
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 networks:
 useEnvironmentNetwork: $.instanceConfiguration.network[0]=null
 useFlatNetwork: false
 customNetworks: switch($.instanceConfiguration.network[0], $=null=>list(), $!=null=>$customJoinNet)
Forms:
 - instanceConfiguration:
 fields:
 - name: network
 type: network
 label: Network
 description: Select a network to join. 'Auto' corresponds to a default environment's network.
 required: false
 murano_networks: translate

For more details on the Dynamic UI its controls and templates please refer to
its specification.

Application development framework

Application development framework is a library that helps application
developers to create applications that can be scalable, highly available,
(self)healable and do not contain boilerplate code for common application
workflow operations. This library is placed into the Murano repository under
the meta/io.murano.applications folder.

To allow your applications to use the code of the library, zip it and upload
to the Murano application catalog.

Framework objectives

The library allows application developers to focus on their
application-specific tasks without the real need to dive into resource
orchestration, server farm configuration, and so on. For example, on how to
install the software on the VMs, how to configure it to interact with other
applications. Application developers are able to focus more on the software
configuration tools (scripts, puppets, and others) and care less about the
MuranoPL if they do not need to define any custom workflow logic.

The main capabilities the library provides and its main use-cases are as
follows:

	Standard operations are implemented in the framework and can be left as is

	The capability to create multi-server applications and scale them

	The capability to create composite multi-component applications

	The capability to track application failures and recover from them

	The capability to define event handlers for various events

Quickstart

To use the framework in your application, include the following lines to the
manifest.yaml file:

Require:
 io.murano.applications:

Create a one-component single-server application

To create a simple application deployed on a single server:

	Include the following lines to the code of the application class:

Namespaces:
 =: my.new.ns
 apps: io.murano.applications

Name: AppName
Extends: apps:SingleServerApplication

	Provide an input for the application server property in your
ui.yaml file:

Application:
 ?:
 type: my.new.ns.AppName
 server:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: generateHostname($.instanceConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 ... <other instance properties>

Now you already have the app that creates a server ready for installing
software on it.

	To create a fully functional app, add an installation script to the body
of the onInstallServer method:

Methods:
 onInstallServer:
 Arguments:
 - server:
 Contract: $.class(res:Instance).notNull()
 - serverGroup:
 Contract: $.class(apps:ServerGroup).notNull()
 Body:
 - $file: sys:Resources.string('installScript.sh')
 - conf:Linux.runCommand($server.agent, $file)

	Optional. Add other methods that handle certain stages of the application
workflow, such as onBeforeInstall, onCompleteInstallation,
onConfigureServer, onCompleteConfiguration, and others. For details
about these methods, see the
Software components section.

Create a one-component multi-server application

To create an application that is intended to be installed on several servers:

	Make it inherit the MultiServerApplication class:

Namespaces:
 =: my.new.ns
 apps: io.murano.applications

Name: AppName
Extends: apps:MultiServerApplication

	Instead of the server property in SingleServerApplication, provide
an input for the servers property that accepts the instance of one of
the inheritors of the ServerGroup class. The ui.yaml file in this
case may look as follows:

Application:
 ?:
 type: my.new.ns.AppName
 servers:
 ?:
 type: io.murano.applications.ServerList
 servers:
 - ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: "Server-1"
 flavor: $.instanceConfiguration.flavor
 ... <other instance properties>

 - ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: "Server-2"
 flavor: $.instanceConfiguration.flavor
 ... <other instance properties>

	Define the custom logic of the application in the handler methods, and it
will be applied to the whole app, exactly like with
SingleServerApplication.

Create a scalable multi-server application

To provide the application with the ability to scale:

	Make the app extend the MultiServerApplicationWithScaling class:

Namespaces:
 =: my.new.ns
 apps: io.murano.applications

Name: AppName
Extends: apps:MultiServerApplicationWithScaling

	Provide the ui.yaml file:

Application:
 ?:
 type: my.new.ns.AppName
 servers:
 ?:
 type: io.murano.applications.ServerReplicationGroup
 numItems: $.appConfiguration.numNodes
 provider:
 ?:
 type: io.murano.applications.TemplateServerProvider
 template:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 flavor: $.instanceConfiguration.flavor
 ... <other instance properties>
 serverNamePattern: $.instanceConfiguration.unitNamingPattern

The servers property accepts instance of the ServerReplicationGroup
class, and in turn it requires input of the numItems and provider
properties.

After the deployment, the scaleOut and scaleIn public methods
(actions) become available in the dashboard UI.

For a working example of such application, see the
com.example.apache.ApacheHttpServer package version 1.0.0.

Library overview

The framework includes several groups of classes:

	replication.yaml

	Classes that provide the capability to replicate the resources.

	servers.yaml

	Classes that provide instances grouping and replication.

	component.yaml

	Classes that define common application workflows.

	events.yaml

	Class for handling events.

	baseapps.yaml

	Base classes for applications.

As it is described in the QuickStart section, the application makes use
of the Application development framework by inheriting from one of the base
application classes, such as SingleServerApplication,
MultiServerApplication, MultiServerApplicationWithScaling. In turn,
these classes are inheritors of the standard Application class and the
SoftwareComponent class. The latter class binds all of the framework
capabilities.

The SoftwareComponent class inherits both Installable and
Configurable classes which provide boilerplate code for the installation
and configuration workflow respectively. They also contain empty methods
for each stage of the workflow (e.g. onBeforeInstall, onInstallServer),
which are the places where application developers can add their own
customization code.

The entry point to execute deployment of the software component is its
deployAt method which requires instance of one of the inheritors of the
serverGroup class. It is the object representing the group of servers
the application should be deployed to. The application holds such an object as
one of its properties. It can be a single server (SingleServerGroup
subclass), a prepopulated list of servers (ServerList subclass) or a list
of servers that are dynamically generated in runtime
(ServerReplicationGroup subclass).

ServerReplicationGroup or, more precisely, one of its parent classes
ReplicationGroup controls the number of items it holds by releasing items
over the required amount and requesting creation of the new items in runtime
from the ReplicaProvider class which acts like an object factory. In case
of servers, it is TemplateServerProvider which creates new servers from the
given template. Replication is done during the initial deployment and during
the scaling actions execution.

Framework detailed description

This section provides technical description of all the classes present in the
application development library, their hierarchy and usage.

Scaling primitives

There is an ability to group similar resources together, produce new copies
of the same resources or release the existing ones on request. Now it is
implemented for instances only, other resources may be added later.

The following is the hierarchy of classes that provide grouping and
replication of resources:

+-------+
| +-------+
| | +--------+ +------------------+ +-----------------+
| | | | | | | |
+-+ | Object <--------+ ReplicationGroup +--------> ReplicaProvider |
 +-+ | | | | |
 +--------+ +---+--------------+ +-+--------+------+
 ^ ^ ^
 | | |
 | +------------------+-----+ |
 | | | |
+-------+ | | CloneReplicaProvider | |
+-------+		+ other		
	+----------+	+------------------------+		
+-+ | Instance | | |
 +-+ | | |
 +----+-----+ | |
 | | |
 +-----+-------+ | |
 | | | |
 | ServerGroup | | +---------------+--+
 | | | | Template |
 +-----^-------+ +---+----------+ | Server +--+
 | | Server +-------> Provider | |
 +------------+ Replication | +-----+------------+ +---+
 | Group | | | |
 +--------------+ +---+---other---+ |
 | |
 +---------------+

ReplicationGroup

A base class which holds the collection of objects generated in runtime in
its items output property and contains a reference to a
ReplicaProvider object in its provider property which is used to
dynamically generate the objects in runtime.

Input properties of this class include the minItems and maxItems
allowing to limit the number of objects it holds in its collection.

An input-output property numItems allows to declaratively change the
set of objects in the collection by setting its size.

The deploy() method is used to apply the replica settings: it drops
the objects from the collection if their number exceeds the number
specified by the numItems or generate some new if there are not enough
of them.

The scale() method is used to increase or decrease the numItems by
some number specified in the delta argument of the method, but in
range between maxItems and minItems.

ReplicaProvider

A class which does the object replication. The base one is abstract, its
inheritors should implement the abstract createReplica method to
create the actual object. The method accepts the index parameter to
properly parametrize the newly created copy and optional owner
parameter to use it as an owner for the newly created objects.

The concrete implementations of this class should define all the input
properties needed to create new instances of object. Thus the provider
actually acts as a template of the object it generates.

CloneReplicaProvider

An implementation of ReplicaProvider capable to create replicas by
cloning some user-provided object, making use of the template()
contract.

PoolReplicaProvider

Replica provider that takes replicas from the prepopulated pool instead
of creating them.

RoundrobinReplicaProvider

Replica provider with a load balancing that returns replica from the
prepopulated list. Once the provider runs out of free items it goes to the
beginning of the list and returns the same replicas again.

CompositeReplicaProvider

Replica provider which is a composition of other replica providers. It
holds the collection of providers in its providers input property.
Its ReplicaProvider method returns a new replica created by the first
provider in that list. If that value is null, the replica created by the
second provider is returned, and so on. If no not-null replicas are
created by all providers, the method returns null.

This provider can be used to have some default provider with the ability
to fall back to the next options if the preferable one is not successful.

Servers replication

ServerGroup

A class that provides static methods for deployment and releasing
resources on the group of instances.

The deployServers() static method accepts instance of ServerGroup
class and a list of servers as the parameters and deploys all servers from
the list in the environment which owns the server group, unless server is
already deployed.

The releaseServers() static method accepts a list of servers as the
parameter and consequentially calls beginReleaseResources() and
endReleaseResources() methods on each server.

ServerList

A class that extends the ServerGroup class and holds a group of
prepopulated servers in its servers input property.

The deploy() method calls the deployServers() method with the
servers defined in the servers property.

The .destroy() method calls the releaseServers() method with the
servers defined in the servers property.

SingleServerGroup

Degenerate case of a ServerGroup which consists of a single server.
Has the server input property to hold a single server.

CompositeServerGroup

A server group that is composed of other server groups.

ServerReplicationGroup

A subclass of the ReplicationGroup class and the ServerGroup
class to replicate the Instance objects it holds.

The deploy() method of this group not only generates new instances of
servers but also deploys them if needed.

TemplateServerProvider

A subclass of ReplicaProvider which is used to produce the objects
of one of the Instance class inheritors by creating them from the
provided template with parameterization of the hostnames. The resulting
hostname looks like ‘Server {index}{groupName}’.

May be passed as provider property to objects of the
ServerReplicationGroup class.

other replica providers

Other subclasses of ReplicaProvider may be created to produce different
objects of Instance class and its subclasses depending on particular
application needs.

Classes for grouping and replication of other kinds of resources are to be
implemented later.

Software Components

The class to handle the lifecycle of the application is the
SoftwareComponent class which is a subclass of Installable and
Configurable:

+-----------+-+ +-+------------+
Installable		Configurable
+-----------+-+ +-+------------+
 ^ ^
 | |
 | |
 +-+---------------+-+
 | |
 | SoftwareComponent |
 | |
 +-------------------+

The hierarchy of the SoftwareComponent classes is used to define the
workflows of different application lifecycles. The general logic of the
application behaviour is contained in the methods of the base classes and
the derived classes are able to implement the handlers for the custom logic.
The model is event-driven: the workflow consists of the multiple steps, and
most of the steps invoke appropriate on%StepName% methods intended to
provide application-specific logic.

Now ‘internal’ steps logic and their ‘public’ handlers are split into the
separate methods. It should improve the developers’ experience and simplify
the code of the derived classes.

The standard workflows (such as Installation and Configuration) are defined
by the Installable and Configurable classes respectively. The
SoftwareComponent class inherits both these classes and defines its
deployment workflow as a sequence of Installation and Configuration flows.
Other future implementations may add new workflow interfaces and mix them in
to change the deployment workflow or add new actions.

Installation workflow consists of the following methods:

+--+
| INSTALL |
| |
| +------------------------------+ +---------------+ |
+------------------------------+	+---------------+											
+------------------------------+		+---------------+ +---------------+		+----------------------+								
	checkServerIsInstalled	+-+ +----> beforeInstall +----> installServer	+-+ +----> completeInstallation									
	+-+			+-+								
+------------------------------+ +------+--------+ +------+--------+ +-----------+----------+												
+--+
 | | |
 | | |
 | | |
 v v v
 onBeforeInstall onInstallServer onCompleteInstallation

	Method
	Arguments
	Description

	install
	serverGroup
	Entry point of the installation workflow.
Iterates through all the servers of the passed ServerGroup and calls the
checkServerIsInstalled method for each of them. If at least one
of the calls has returned false, calls a beforeInstall method.
Then, for each server which returned false as the result of the
checkServerIsInstalled calls the installServer method to do
the actual software installation.
After the installation is completed on all the servers and if at
least one of the previous calls of checkServerIsInstalled returned
false, the method runs the completeInstallation method.
If all the calls to checkServerIsInstalled return true, this
method concludes without calling any others.

	checkServerIsInstalled
	server
	Checks if the given server requires a (re)deployment of the software
component. By default checks for the value of the attribute installed
of the instance.
May be overridden by subclasses to provide some better logic (e.g. the
app developer may provide code to check if the given software is
pre-installed on the image which was provisioned on the VM).

	beforeInstall
	servers, serverGroup
	Reports the beginning of installation process, sends notification about
this event to all objects which are subscribed for it (see
Event notification pattern section for details) and calls the public
event handler onBeforeInstall.

	onBeforeInstall
	servers, serverGroup
	Public handler of the beforeInstall event. Empty in the base class,
may be overridden in subclasses if some custom pre-install logic needs
to be executed.

	installServer
	server, serverGroup
	Does the actual software deployment on a given server by calling an
onInstallServer public event handler (with notification on this
event). If the installation completes successfully sets the installed
attribute of the server to true, reports successful installation and
returns null. If an exception encountered during the invocation of
onInstallServer, the method handles that exception, reports a
warning and returns the server. The return value of the method indicates
to the install method how many failures encountered in total during
the installation and with what servers.

	onInstallServer
	server, serverGroup
	An event-handler method which is called by the installServer method
when the actual software deployment is needed.It is empty in the base
class. The implementations should override it with custom logic to
deploy the actual software bits.

	completeInstallation
	servers, serverGroup, failedServers
	It is executed after all the installServer methods were called.
Checks for the number of errors reported during the installation: if it
is greater than the value of allowedInstallFailures property, an
exception is raised to interrupt the deployment workflow. Otherwise the
method emits notification on this event, calls an
onCompleteInstallation event handler and then reports the successful
completion of the installation workflow.

	onCompleteInstallation
	servers, serverGroup, failedServers
	An event-handler method which is called by the completeInstallation
method when the component installation is about to be completed.
Default implementation is empty. Inheritors may implement this method to
add some final handling, reporting etc.

Configuration workflow consists of the following methods:

+--+
| CONFIGURATION |
| +-----------------+ |
	+---------------+ +-----------------+													
	+---------------+	+-----------------+												
+------------v--+ +---------------+		+--------------+ +-----------------+		+-----------------------+										
	checkCluster\ +---> checkServer\	+-+---> preConfigure +---> configureServer	+-+---> completeConfiguration											
	IsConfigured		IsConfigured +-+			+-+								
+------------+--+ +---------------+ +------+-------+ +--------+--------+ +-----------+-----------+														
+----------v----------+														
	getConfigurationKey													
+---------------------+														
+--+
 | | |
 | | |
 v v v
 configureSecurity, onConfigureServer onCompleteConfiguration
 onPreConfigure

	Method
	Arguments
	Description

	configure
	serverGroup
	Entry point of the configuration workflow.
Calls a checkClusterIsConfigured method. If the call returns true,
workflow exits without any further action. Otherwise for each server in
the serverGroup it calls checkServerIsConfigured method and gets
the list of servers that need reconfiguration. The preConfigure
method is called with that list. At the end calls the
completeConfiguration method.

	checkClusterIsConfigured
	serverGroup
	Has to return true if the configuration (i.e. the values of input
properties) of the component has not been changed since it was last
deployed on the given server group. Default implementation calls the
getConfigurationKey method and compares the returned result with a
value of configuration attribute of serverGroup. If the results
match returns true otherwise false.

	getConfigurationKey
	None
	Should return some values describing the configuration state of the
component. This state is used to track the changes of the configuration
by the checkClusterIsConfigured and checkServerIsConfigured
methods.
Default implementation returns a synthetic value which gets updated on
every environment redeployment. Thus the subsequent calls of the
configure method on the same server group during the same deployment
will not cause the reconfiguration, while the calls on the next
deployment will reapply the configuration again.
The inheritors may redefine this to include the actual values of the
configuration properties, so the configuration is reapplied only if the
appropriate input properties are changed.

	checkServerIsConfigured
	server, serverGroup
	It is called to check if the particular server of the server group has
to be reconfigured thus providing more precise control compared to
cluster-wide checkClusterIsConfigured.
Default implementation calls the getConfigurationKey method and
compares the returned result with a value of configuration attribute
of the server. If the results match returns true otherwise false.
This method gets called only if the checkClusterIsConfigured method
returned false for the whole server group.

	preConfigure
	servers, serverGroup
	Reports the beginning of configuration process, calls the
configureSecurity method, emits the notification and calls the
public event handler onPreConfigure. This method is called once per
the server group and only if the changes in configuration are detected.

	configureSecurity
	servers, serverGroup
	Intended for configuring the security rules. It is empty in the base
class. Fully implemented in the OpenStackSecurityConfigurable class
which is the inheritor of Configurable.

	onPreConfigure
	servers, serverGroup
	Public event-handler which is called by the preConfigure method
when the (re)configuration of the component is required.
Default implementation is empty. Inheritors may implement this method to
set various kinds of cluster-wide states or output properties which may
be of use at later stages of the workflow.

	configureServer
	server, serverGroup
	Does the actual software configuration on a given server by calling the
onConfigureServer public event handler. Before that reports the
beginning of the configuration and emits the notification. If the
configuration completes successfully calls the getConfigurationKey
method and sets the configuration attribute of the server to resulting
value thus saving the configuration applied to a given server. Returns
null to indicate successful configuration.
If an exception encountered during the invocation of
onConfigureServer, the method will handle that exception, report a
warning and return the current server to signal its failure to the
configure method.

	onConfigureServer
	server, serverGroup
	An event-handler method which is called by the configureServer
method when the actual software configuration is needed. It is empty in
the base class. The implementations should override it with custom logic
to apply the actual software configuration on a given server.

	completeConfiguration
	servers, serverGroup, failedServers
	It is executed after all the configureServer methods were called.
Checks for the number of errors reported during the configuration: if it
is greater than set by the allowedConfigurationFailures property, an
exception is raised to interrupt the deployment workflow. Otherwise the
method emits notification, calls an onCompleteConfiguration event
handler, calls the getConfigurationKey method and sets the
configuration attribute of the server group to resulting value and
then reports successful completion of the configuration workflow.

	onCompleteConfiguration
	servers, serverGroup, failedServers
	The event-handler method which is called by the completeConfiguration
method when the component configuration is finished at all the servers.
Default implementation is empty. Inheritors may implement this method to
add some final handling, reporting etc.

The OpenStackSecurityConfigurable class extends Configurable by
implementing the configureSecurity method of the base class and adding the
empty getSecurityRules method.

	Method
	Arguments
	Description

	getSecurityRules
	None
	Returns an empty dictionary in default implementation. Inheritors which
want to add security rules during the app configuration should
implement this method and make it return a list of dictionaries
describing the security rules with the following keys:

	FromPort (port number, e.g. 80).

	ToPort (port number, e.g. 80).

	IpProtocol: (string, e.g. ‘tcp’).

	External: (boolean: true means that the inbound traffic to the given
port (or port range) may originate from outside of the environment;
false means that only the VMs spawned by this or other apps of the
current environment may connect to this port).

	Ethertype: (optional, can be ‘IPv4’ or ‘IPv6’).

	configureSecurity
	servers, serverGroup
	Gets the list of security rules provided by the getSecurityRules
method and adds security group with these rules to the Heat stacks of
all regions which the component’s servers are deployed to

Consider the following example of this class usage:

Namespaces:
 =: com.example.apache
 apps: io.murano.applications

Name: ApacheHttpServer

Extends:
 - apps:MultiServerApplicationWithScaling
 - apps:OpenStackSecurityConfigurable

Methods:
 getSecurityRules:
 Body:
 - Return:
 - ToPort: 80
 FromPort: 80
 IpProtocol: tcp
 External: true
 - ToPort: 443
 FromPort: 443
 IpProtocol: tcp
 External: true

In the example above, the ApacheHttpServer class is configured to create
a security group with two security rules allowing network traffic over HTTP
and HTTPS protocols on its deployment.

The SoftwareComponent class inherits both Installable and
Configurable and adds several additional methods.

	Method
	Arguments
	Description

	deployAt
	serverGroup
	Binds all workflows into one process. Consequentially calls deploy
method of the serverGroup, install and configure methods
inherited from the parent classes.

	report
	message
	Reports a message using environment’s reporter.

	detectSuccess
	allowedFailures, serverGroup, failedServers
	Static method that returns true in case the actual number of failures
(number of failedServers) is less than or equal to the
allowedFailures. The latter can be on of the following options:
none, one, two, three, any, ‘quorum’. any allows any number
of failures during the installation or configuration. quorum allows
failure of less than a half of all servers.

Event notification pattern

The Event class may be used to issue various notifications to other
MuranoPL classes in an event-driven manner.

Any object which is going to emit the notifications should declare the
instances of the Event class as its public Runtime properties. You can see
the examples of such properties in the Installable and Configurable
classes:

Name: Installable

Properties:
 beforeInstallEvent:
 Contract: $.class(Event).notNull()
 Usage: Runtime
 Default:
 name: beforeInstall

The object which is going to subscribe for the notifications should pass
itself into the subscribe method of the event along with the name of its
method which will be used to handle the notification:

$event.subscribe($subscriber, handleFoo)

The specified handler method must be present in the subscriber class
(if the method name is missing it will default to handle%Eventname%)
and have at least one standard (i.e. not VarArgs or KwArgs) argument
which will be treated as sender while invoking.

The unsubscribe method does the opposite and removes object from the
subscribers of the event.

The class which is going to emit the notification should call the notify
method of the event and pass itself as the first argument (sender). All
the optional parameters of the event may be passed as varargs/kwargs of the
notify call. They will be passed all the way to the handler methods.

This is how it looks in the Installable class:

beforeInstall:
 Arguments:
 - servers:
 Contract:
 - $.class(res:Instance).notNull()
 - serverGroup:
 Contract: $.class(ServerGroup).notNull()
 Body:
 - ...
 - $this.beforeInstallEvent.notify($this, $servers, $serverGroup)
 - ...

The notifyInParallel method does the same, but invokes all handlers of
subscribers in parallel.

Base application classes

There are several base classes that extend standard io.murano.Application
class and SoftwareComponent class from the application development
library.

	SingleServerApplication

	A base class for applications running a single software component on a
single server only. Its deploy method simply creates the
SingleServerGroup with the server provided as an application input.

	MultiServerApplication

	A base class for applications running a single software component on
multiple servers. Unlike SingleServerApplication, it has the
servers input property instead of server. It accepts instance of
on of the inheritors of the ServerGroup class.

	MultiServerApplicationWithScaling

	Extends MultiServerApplication with the ability to scale the
application by increasing (scaling out) or decreasing (scaling in) the
number of nodes with the application after it is installed. The
differences from MultiServerApplication are:

	the servers property accepts only instances of
ServerReplicationGroup rather than any ServerGroup

	the additional optional scaleFactor property accepts the number by
which the app is scaled at once; it defaults to 1

	the scaleOut and scaleIn public methods are added

Application developers may as well define their own classes using the
same approach and combining base classes behaviour with the custom code to
satisfy the needs of their applications.

Application developer’s cookbook

If you have not written murano packages before,
start from the existing Step-by-Step guide. It contains
general information about murano packages development process. Additionally,
see the MuranoPL reference.

Load applications from a local directory

Normally, whenever you make changes to your application, you have to package it,
re-upload the package to the API, and delete the old package from the API. This
makes developing and testing murano applications troublesome and time-consuming.
Murano-engine provides a way to speed up the edit-upload-deploy loop. This can be
done with the load_packages_from option. Murano-engine examines any directories
mentioned in this option before accessing the API. Therefore, you do not even
need to package the application into a ZIP archive and any changes you make are
instantly available to the engine, if you do not plan to check or change the
application UI. To check your application’s appearance in the OpenStack dashboard,
upload the application for the first run. Additionally, re-upload the package
using the OpenStack dashboard or CLI each time you update the application UI.

To load an application from a local directory, modify
the load_packages_from parameter in murano config [engine] section.

[engine]
...
load_packages_from = /path/to/murano/applications
...

Note

The murano-engine scans the directory structure and seeks application
manifests. Therefore, you can point the load_packages_from parameter
to a cloned version of the murano-apps repository.

Deploy environment using CLI

The standard way to deploy an application in murano is by using the murano
dashboard (OpenStack dashboard plug-in). However, if the OpenStack dashboard is
not available or some sort of automation is required, murano provides the
capability to deploy environments through CLI. It is a powerful tool
that allows users and application developers make arbitrary changes to apps
object-model. This can be useful in early stages of application development to
experiment with different object models of an application. You can read more about
it in Deploying environments using CLI

Application unit test framework

An application unit test framework was created to make development process
easier. With this framework you can check different scenarios of application
deployment without running real deployments.

For more information about application unit tests, see
Application unit tests.

Garbage collection system in MuranoPL

A garbage collection system (GC) manages the deallocation of resources in
murano. The garbage collection system implementation is based on the execution
of special .destroy() methods that you may define in MuranoPL classes.
These methods contain logic to deallocate any resources that were allocated
by MuranoPL objects. During deployment all objects that are not referenced by
any other object and that are not present in the object model anymore is deleted
by GC.

	The .destroy() methods are executed for each class in the class hierarchy of
the object that has this method. Child classes cannot prevent parent classes
.destroy from being called and cannot call base classes
implementation manually

	.destroy() methods for class hierarchy are called in reversed order from that
of .init() - starting from the actual object type and up to the
io.murano.Object class

	If object Bar is owned (directly or indirectly) by object Foo then Bar
is going to be destroyed before Foo. There is a way for Foo to get
notified on Bar‘s destruction so that it can prepare for it. See below for
details.

	For objects that are not related to each other the destruction
order is undefined. However objects may establish destruction dependency between
them to establish the order.

	Unrelated objects might be destroyed in different green threads.

	Any exceptions thrown in the .destroy() methods are muted (but still logged).

Destruction dependencies may be used to notify Foo of Bar‘s destruction even if
Bar is not owned by Foo. If you subscribe Foo to Bar‘s destruction,
the following will happen:

	Foo will be notified when Bar is about to be destroyed.

	If both Foo and Bar are going to be destroyed in the same garbage
collection execution, Bar will be destroyed before Foo.

Garbage collector methods

Murano garbage collector class (io.murano.system.GC) has
the following methods:

	collect()

	Initiates garbage collection of unreferenced objects of current deployment.
Usually, it is called by murano ObjectStore object during deployment.
However, it can be called from MuranoPL code like
io.murano.system.GC.collect().

	isDestroyed(object)

	Checks if the object was already destroyed during a GC session and thus
its methods cannot be called.

	isDoomed(object)

	Can be used within the .destroy() method to check if another object is
also going to be destroyed.

	subscribeDestruction(publisher, subscriber, handler=null)

	Establishes a destruction dependency from the subscriber to the object
passed as publisher. This method may be called several times with the same
arguments. In this case, only a single destruction dependency will be established.
However, the same amount of calls of unsubscribeDestruction will be required to
remove it.

The handler argument is optional. If passed, it should be the name of an
instance method defined by the caller class to handle the notification of
publisher destruction. The following argument will be passed to the
handler method:

	object

	A target object that is going to be destroyed. It is not recommended
persisting the reference to this object anywhere. This will not prevent the
object from being garbage collected but the object will be moved to the
“destroyed” state. This is an advanced feature that should
not be used unless it is absolutely necessary.

	unsubscribeDestruction(publisher, subscriber, handler=null)

	Removes the destruction dependency from the subscriber to the object
passed as publisher. The method may be called several times with the same
arguments without any side effects. If subscribeDestruction was called more
than once, the same (or more) amount of calls to unsubscribeDestruction is
needed to remove the dependency.

The handler argument is optional and must correspond to the handler
passed during subscription if it was provided.

Using destruction dependencies

To use direct destruction dependencies in your murano applications, use the
methods from MuranoPL io.murano.system.GC. To establish a
destruction dependency, call the
io.murano.system.GC.subscribeDestruction method in you
application code:

.init:
 Body:
 - If: $.publisher
 Then:
 - sys:GC.subscribeDestruction($.publisher, $this, onPublisherDestruction)

In the example above, onPublisherDestruction is a Foo object method that
will be called when Bar is destroyed. If you do not want to do something
specific with the destroyed object omit the third parameter.
The destruction dependencies will be persisted between deployments and
deserialized from the objects model to murano object.

FAQ

There are too many files in Murano package, why not to use a single
Heat Template?

To install a simple Apache service to a new VM, Heat Template is
definitely simpler. But the Apache service is useless without its
applications running under it. Thus, a new Heat Template is necessary
for every application that you want to run with Apache. In Murano,
you can compose a result software to install it on a VM on-the-fly:
it is possible to select an application that can run under Apache
dynamically. Or you can set a VM where Apache is installed as a
parameter. This way, the files in the application package allow
to compose compound applications with multiple configuration options.
For any single combination you need a separate Heat Template.

The Application section is defined in the UI form. Can I remove it?

No. The Application section is a template for Murano object model
which is the instruction that helps you to understand the
environment structure that you deploy. While filling the forms that
are auto-generated from the UI.yaml file, object model is
updated with the values entered by the user. Eventually, the Murano
engine receives the resulted object model (.json file) after the
environment is sent to the deploy.

The Templates section is defined in the UI form. What’s the purpose?

Sometimes, the user needs to create several instances with the same
configuration. A template defined by a variable in the
Templates section is multiplied by the value of the number of
instances that are set by the user. A YAQL repeat function is
used for this operation.

Some properties have Usage, others do not. What does this affect?

Usage indicates how a particular property is used. The default
value is In, so sometimes it is omitted. The Out property
indicates that it is not set from outside, but is calculated in
the class methods and is available for the read operation from
other classes. If you don’t want to initialize in the class
constructor, and the property has no default value, you specify
Out in the Usage.

Can I use multiple inheritance in my classes?

Yes. You can specify a list of parent classes instead of a single
string in the regular YAML notation. The list with one element is
also acceptable.

There are FullName and Name properties in the manifest file. What’s
the difference between them?

Name is displayed in the web UI catalog, and FullName is a
system name used by the engine to get the class definition and
resolve the class interconnections.

How does Murano know which class is the main one?

There is no main class term in the MuranoPL. Everything depends
on a particular object model and an instance class representing the
instance. Usually, an entry-point class has exactly the same name
as the package FullName, and it uses other classes.

What is the difference between $variable and $.variable in the class
definitions?

By default, $ represents a current object (similar to self
in Python or this in C++/Java/C#), so $.variable accesses
the object field/property. In contrast, $variable (without a dot)
means a local method variable. Note that $ can change its value
during execution of some YAQL functions like select, where it means
a current value. A more safe form is to use a reserved variable
$this instead of $. $this.variable always refers to an
object-level value in any context.

Contributor Guide

	How to contribute

	Development guidelines
	Conventions

	High-level overview of Murano components

	Coding guidelines

	Debug tips

	Murano plug-ins
	MuranoPL extension plug-ins

	MuranoPL package type plug-ins

	Creating a Murano plug-in

	Installing a plug-in

	Plug-in versioning

	Organization

	Development environment

	Testing
	Testing guidelines

	Continuous Integration service

	UI testing

	Tempest tests

	Automated testing machinery

	Documentation guidelines

	Backporting to stable/branches
	Upstream support phases

	Bug nomination process

How to contribute

Development guidelines

Conventions

High-level overview of Murano components

Coding guidelines

There are several significant rules for the Murano developer:

	Follow PEP8 and OpenStack style guidelines.

	Do not import functions. Only module imports are accepted.

	Make commits as small as possible. It speeds up review of the change.

	Six library usage rule: use it only when really necessary (for example if
existing code will not work in python 3 at all).

	Mark application name in the 1st line of commit message for murano-apps
repository, i.e. [Apache] or [Kubernetes].

	Prefer code readability over performance unless the situations when
performance penalty can be proven to be big.

	Write Py3-compatible code. If that’s impossible leave comment.

Rules for MuranoPL coding style:

	Use camelCase for MuranoPL functions/namespaces/variables/properties,
PascalCase for class names.

	Consider using $this instead of $ where appropriate.

Debug tips

Murano plug-ins

Murano plug-ins help to extend the capability of murano.
There are two types of murano plug-ins which serve different purposes:

	Extend murano Core Library by implementing additional functionality.

	Add new package type classes.

This section contains the following topics:

	MuranoPL extension plug-ins

	MuranoPL package type plug-ins
	Tooling for package preparation

	Package API interface reference

	PackageBase class

	Creating a Murano plug-in
	The structure of the demo application package

	Installing a plug-in

	Plug-in versioning

	Organization
	Documentation

	Code

	Bugs

MuranoPL extension plug-ins

Murano plug-ins allow extending MuranoPL with new classes. Therefore, using
such plug-ins applications with MuranoPL format, you access some additional
functionality defined in a plug-in. For example, the Magnum plug-in, which
allows murano to deploy applications such as Kubernetes using the capabilities
of the Magnum client.

MuranoPL extension plug-ins can be used for the following purposes:

	Providing interaction with external services.

For example, you want to interact with the OpenStack Image service to get
information about images suitable for deployment. A plug-in may request image
data from glance during deployment, performing any necessary checks.

	Enabling connections between murano applications and external hardware

For example, you have an external load balancer located on a powerful
hardware and you want your applications launched in OpenStack to use that
load balancer. You can write a plug-in that interacts with the load balancer
API. Once done, add new apps to the pool of your load balancer or make any
other configurations from within your application definition.

	Extending Core Library class functionality, which is responsible for creating
networks, interaction with murano-agent, and others

For example, you want to create networks with special parameters for all of
your applications. You can just copy the class that is responsible for
network management from the Murano Core library, make the desired
modification, and load the new class as a plug-in. Both classes will be
available, and it is up to you to decide which way to create your networks.

	Optimization of frequently used operations. Plug-in classes are written in
Python, therefore, the opportunity for improvement is significant.

Murano provides a number of optimization opportunities depending on the
improvement needs. For example, classes in the Murano Core Library can be
rewritten in C and used from Python code to improve their performance in
particular use cases.

MuranoPL package type plug-ins

The only package type natively supported by Murano is MuranoPL. However, it is
possible to extend Murano with support for other formats of application
definitions. TOSCA CSARs and HOT templates are the two examples of alternate
ways to define applications.

Package types plug-ins are normal Python packages that can be distributed
through PyPI and installed using pip or its alternatives. It is
important that the plug-in be installed to the same Python instance that is
used to run Murano API and Murano Engine. For multi-node Murano deployments,
plug-ins need to be installed on each node.

To associate a plug-in with a particular package format, it needs to have a
special record in [entry_points] section of setup.cfg file:

io.murano.plugins.packages =
 Name/Version = namespace:Class

For example:

[entry_points]
io.murano.plugins.packages =
 Cloudify.TOSCA/1.0 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage

This declaration maps particular pair of format-name/version to Python class
that implements Package API interface for the package type. It is possible
to specify several different format names or versions and map them to single
or different Python classes. For example, it is possible to specify

[entry_points]
io.murano.plugins.packages =
 Cloudify.TOSCA/1.0 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage
 Cloudify.TOSCA/1.1 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage
 Cloudify.TOSCA/2.0 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage_v2

Note

A single Python plug-in package may contain several Murano plug-ins
including of different types. For example, it is possible to combine
MuranoPL extension and package type plug-ins into a single package.

Tooling for package preparation

Some package formats may require additional tooling to prepare package ZIP
archive of desired structure. In such cases it is expected that those tools
will be provided by plug-in authors either as part of the same Python package
(by exposing additional shell entry points) or as a separate package or
distribution.

The only two exceptions to this rule are native MuranoPL packages and HOT
packages that are built into Murano (there is no need to install additional
plug-ins for them). Tooling for those two formats is a part of
python-muranoclient.

Package API interface reference

Plug-ins expose API for the rest of Murano to interact with the package
by implementing murano.packages.package.Package interface.

Class initializer:

def __init__(self, format_name, runtime_version, source_directory, manifest):

	format_name: name part of the format identifier (string)

	runtime_version: version part of the format identifier (instance of
semantic_version.Version)

	source_directory: path to the directory where package content was
extracted (string)

	manifest: contents of the manifest file (string->string dictionary)

Note: implementations must call base class (Package) initializer
passing the first three of these arguments.

Abstract properties that must be implemented by the plug-in:

def full_name(self):

	Fully qualified name of the package. Must be unique within package
scope of visibility (string)

def version(self):

	Package version (not to confuse with format version!). An instance of
semantic_version.Version

def classes(self):

	List (or tuple) of MuranoPL class names (FQNs) that package contains

def requirements(self):

	Dictionary of requirements (dependencies on other packages) in a form
of key-value mapping from required package FQN string to SemVer
version range specifier (instance of semantic_version.Spec or string
representation supported by Murano versioning scheme)

def package_type(self):

	Package type: “Application” or “Library”

def display_name(self):

	Human-readable name of the package as presented to the user (string)

def description(self):

	Package description (string or None)

def author(self):

	Package author (string or None)

def supplier(self):

	Package supplier (string or None)

def tags(self):

	List or tags for the package (list of strings)

def logo(self):

	Package (application) logo file content (str or None)

def supplier_logo(self):

	Package (application) supplier logo file content (str or None)

def ui(self):

	YAML-encoded string containing application’s form definition (string or
None)

Abstract methods that must be implemented by the plug-in:

def get_class(self, name):

	Returns string containing MuranoPL code (YAML-encoded string) for the
class whose fully qualified name is in “name” parameter (string)

def get_resource(self, name):

	Returns path for resource file whose name is in “name” parameter (string)

Properties that can be overridden in the plug-in:

def format_name(self):

	Canonical format name for the plug-in. Usually the same value that was
passed to class initializer

def runtime_version(self):

	Format version. Usually the same value that was passed to class
initializer (semantic_version.Version)

def blob(self):

	Package file (.zip) content (str)

PackageBase class

Usually, there is no need to manually implement all the methods and properties
described. There is a murano.packages.package.PackageBase class that provides
typical implementation of most of required properties by obtaining
corresponding value from manifest file.

When inheriting from PackageBase class, plug-in remains responsible for
implementation of:

	ui property

	classes property

	get_class method

This allows plug-in developers to concentrate on dynamic aspects of the package
type plug-in while keeping all static aspects (descriptions, logos and so on)
consistent across all package types (at least those who inherit from
PackageBase).

Creating a Murano plug-in

Murano plug-in is a setuptools-compliant python package with setup.py and
all other necessary files. For more information about defining stevedore
plug-ins, see stevedore documentation [http://docs.openstack.org/developer/stevedore/].

The structure of the demo application package

The package must meet the following requirements:

	It must be a ZIP archive.

	The root folder of the archive must contain a manifest.yaml file.

	The manifest must be a valid YAML file representing key-value associative
array.

	The manifest should contain a Format key, that is, a format identifier. If
it is not present, “MuranoPL/1.0” is used.

Murano uses the Format attribute of the manifest file to find an appropriate
plug-in for a particular package type. All interactions between the rest of
Murano and package file contents are done through the plug-in interface alone.

Because Murano never directly accesses files inside the packages, it is
possible for plug-ins to dynamically generate MuranoPL classes on the fly.
Those classes will be served as adapters between Murano and third-party systems
responsible for deployment of particular package types. Thus, for Murano all
packages remain to be of MuranoPL type though some of them are “virtual”.

The format identifier has the following format: Name/Version.
For example, Heat.HOT/1.0. If name is not present, it is assumed to be
MuranoPL (thus 1.0 becomes MuranoPL/1.0). Version strings are in
SemVer three-component format (major.minor.patch). Missing version components
are assumed to be zero (thus 1.0 becomes 1.0.0).

Installing a plug-in

To use a plug-in, install it on murano nodes in the same Python environment
with murano engine service.

To install a plug-in:

	Execute the plug-in setup script.

Alternatively, use a package deployment tool, such as pip:

cd plugin_dir
pip install .

	Restart murano engine. After that, it will be possible to upload and deploy
the applications that use the capabilities that a plug-in provides.

Plug-in versioning

Plug-ins located in Murano repository have the same version as Murano.
Therefore, to use a specific version of such plug-in, checkout to this version.
Then specify the version of plug-in classes in your application’s manifest file
as usual:

Require:
 murano.plugins.example: 2.0.0

It should be standard SemVer format version string consisting of three parts:
Major.Minor.Patch. For more information about versioning, refer to
Versioning.

Note

Enable Glare to use versioning.

Organization

Documentation

Documentation helps users understand what your plug-in does. For plug-ins
located in the Murano repository, create a README.rst file in the main
folder of the plug-in. The README.rst file may contain information about
the plug-in and an installation guide.

Code

The code of your plug-in may be located in the following repositories:

	Murano repository. In this case, the plug-in should be located in the
murano/contrib/plugins folder.

	A separate repository. In this case, create your own project.

Bugs

All bugs for specific plug-ins are reported in their projects. Bugs related
to plug-ins located in Murano repository should be reported in the Murano [https://bugs.launchpad.net/murano/] project.

Development environment

Testing

Testing guidelines

Continuous Integration service

UI testing

Tempest tests

Automated testing machinery

CI design

CI jobs

Documentation guidelines

Backporting to stable/branches

Since murano is a big-tent OS project it largely follows the
OpenStack stable branch guide [http://docs.openstack.org/project-team-guide/stable-branches.html]

Upstream support phases

	Phase I (first 6 months): All bugfixes (which meet the stable port criteria,
described in OS stable branch policy) are appropriate

	Phase II (6-12 months): Only critical bugfixes and
security patches are acceptable

	Phase III (more than 12 months): Only security
patches are acceptable

In order to accept a change into $release it must first be accepted into all
releases back to master.

There are two notable exceptions to the support phases rule:

	murano-apps repository:
We recognise, that murano apps have different lifecycle than main murano
repository. Most of the time new apps are being written for already released
versions of murano, not for master. Having a rich collection of apps is one of
the goals of murano-apps repository, therefore we accept backports of apps and
app features to previous release branches. This is done on a case by case basis
and should be discussed with PTL and Murano core members on IRC or Mailing
List. However we believe, that submitting an app to stable branch only means
that author of the patch is not going to support the app. Therefore for the app
to get backported it still has to be first accepted to master and all
subsequent releases.

	murano core library patches: Murano Core Library is an
app, that provides core functionality and classes for other murano apps. It
shares a lot of properties of regular murano apps and the rationale behind
allowing backports of MuranoPL code from master to stable branches is basically
the same: low regression risks during upgrades, high adoption impact. However
since core library is much more sensitive app, backports to it should be taken
more seriously and should be discussed on IRC and Mailing List and receive
PTL’s approval.

These two exceptions do not mean, that we’re free to backport
any code from master to stable branches. Instead they show, that murano team
recognises the importance of these two areas of murano project and treats
exceptions to those slightly more liberally than to other parts of murano
project.

Bug nomination process

Whenever you file a bug, or see a bug, that you think
is eligible for backporting in stable branch nominate it for the corresponding
series. If bug reporter does not nominate the bug for eligible branch — this is
done by murano bug supervisor during triaging/confirmation process. In case it
is not clear whether the bug is eligible or not or if you do not have
permissions to nominate a bug for series you can set
$release-backport-potential tag (for example liberty-backport-potential).
Murano team is holding bi-weekly meetings on IRC (as part of regular community
meetings) to triage and nominate bugs for stable backports.

Appendix

	High-level definitions of Murano concepts

	Tutorials
	Integration with Docker

	Integration with Kubernetes

	HA and autoscaling

	REST API specification

	Murano command-line client
	Subcommands

	Murano optional arguments

	Application catalog API v1 commands

	Glossary

High-level definitions of Murano concepts

Tutorials

Integration with Docker

Integration with Kubernetes

HA and autoscaling

REST API specification

Murano command-line client

The murano client is the command-line
interface (CLI) for the Application catalog API and its extensions.

For help on a specific murano command, enter:

murano help COMMAND

murano usage
usage: murano \[--version] \[-d] \[-v] \[-k] \[--os-cacert <ca-certificate>]
\[--cert-file CERT_FILE] \[--key-file KEY_FILE]
\[--ca-file CA_FILE] \[--api-timeout API_TIMEOUT]
\[--os-username OS_USERNAME] \[--os-password OS_PASSWORD]
\[--os-tenant-id OS_TENANT_ID] \[--os-tenant-name OS_TENANT_NAME]
\[--os-auth-url OS_AUTH_URL] \[--os-region-name OS_REGION_NAME]
\[--os-auth-token OS_AUTH_TOKEN] \[--os-no-client-auth]
\[--murano-url MURANO_URL] \[--glance-url GLANCE_URL]
\[--murano-api-version MURANO_API_VERSION]
\[--os-service-type OS_SERVICE_TYPE]
\[--os-endpoint-type OS_ENDPOINT_TYPE] \[--include-password]
\[--murano-repo-url MURANO_REPO_URL]
<subcommand> ...

Subcommands

	bundle-import Import a bundle.

	category-create Create a category.

	category-delete Delete a category.

	category-list List all available categories.

	category-show

	deployment-list List deployments for an environment.

	env-template-add-app Add application to the environment template.

	env-template-create Create an environment template.

	env-template-del-app Delete application to the environment template.

	env-template-delete Delete an environment template.

	env-template-list List the environments templates.

	env-template-show Display environment template details.

	env-template-update Update an environment template.

	environment-create Create an environment.

	environment-delete Delete an environment.

	environment-list List the environments.

	environment-rename Rename an environment.

	environment-show Display environment details.

	package-create Create an application package.

	package-delete Delete a package.

	package-download Download a package to a filename or stdout.

	package-import Import a package.

	package-list List available packages.

	package-show Display details for a package.

	service-show

	bash-completion Prints all of the commands and options to stdout.

	help Display help about this program or one of its subcommands.

Murano optional arguments

	–version

	show program’s version number and exit

	-d, –debug

	Defaults to env[MURANOCLIENT_DEBUG]

	-v, –verbose

	Print more verbose output

	-k, –insecure

	Explicitly allow muranoclient to perform “insecure” SSL (https) requests.
The server’s certificate will not be verified against any certificate
authorities. This option should be used with caution.

	–os-cacert <ca-certificate>

	Specify a CA bundle file to use in verifying a TLS (https) server
certificate. Defaults to env[OS_CACERT]

	–cert-file CERT_FILE

	Path of certificate file to use in SSL connection. This file can optionally
be prepended with the private key.

	–key-file KEY_FILE

	Path of client key to use in SSL connection. This option is not necessary
if your key is prepended to your cert file.

	–ca-file CA_FILE

	Path of CA SSL certificate(s) used to verify the remote server certificate.
Without this option glance looks for the default system CA certificates.

	–api-timeout API_TIMEOUT

	Number of seconds to wait for an API response, defaults to system socket
timeout

	–os-username OS_USERNAME

	Defaults to env[OS_USERNAME]

	–os-password OS_PASSWORD

	Defaults to env[OS_PASSWORD]

	–os-project-id OS_PROJECT_ID

	Defaults to env[OS_PROJECT_ID]

	–os-project-name OS_PROJECT_NAME

	Defaults to env[OS_PROJECT_NAME]

	–os-auth-url OS_AUTH_URL

	Defaults to env[OS_AUTH_URL]

	–os-region-name OS_REGION_NAME

	Defaults to env[OS_REGION_NAME]

	–os-auth-token OS_AUTH_TOKEN

	Defaults to env[OS_AUTH_TOKEN]

	–os-no-client-auth

	Do not contact keystone for a token. Defaults to env[OS_NO_CLIENT_AUTH].

	–murano-url MURANO_URL

	Defaults to env[MURANO_URL]**

	–glance-url GLANCE_URL

	Defaults to env[GLANCE_URL]

	–murano-api-version MURANO_API_VERSION

	Defaults to env[MURANO_API_VERSION] or 1

	–os-service-type OS_SERVICE_TYPE

	Defaults to env[OS_SERVICE_TYPE]

	–os-endpoint-type OS_ENDPOINT_TYPE

	Defaults to env[OS_ENDPOINT_TYPE]

	–include-password

	Send os-username and os-password to murano.

	–murano-repo-url MURANO_REPO_URL

	Defaults to env[MURANO_REPO_URL] or
http://storage.apps.openstack.org_

Application catalog API v1 commands

murano bundle-import

Import a bundle. FILE can be either a path to a zip file, URL or name from
repo. if FILE is a local file does not attempt to parse requirements and
treat Names of packages in a bundle as file names, relative to location of
bundle file.

Positional arguments

	<FILE>

	Bundle URL, bundle name, or path to the bundle file

Optional arguments

	–is-public

	Make packages available to users from other project

	–exists-action {a,s,u}

	Default action when a package already exists

murano category-create

Create a category.

Positional arguments

	<CATEGORY_NAME>

	Category name

murano category-delete

Delete a category.

Positional arguments

	<ID>

	ID of a category(s) to delete

murano category-list

List all available categories.

murano category-show

Positional arguments

	<ID>

	ID of a category(s) to show

murano deployment-list

List deployments for an environment.

Positional arguments

	<ID>

	Environment ID for which to list deployments

murano env-template-add-app

Add application to the environment template.

Positional arguments

	<ENV_TEMPLATE_NAME>

	Environment template name

	<FILE>

	Path to the template.

murano env-template-create

Create an environment template.

Positional arguments

	<ENV_TEMPLATE_NAME>

	Environment template name

murano env-template-del-app

Delete application to the environment template.

Positional arguments

	<ENV_TEMPLATE_ID>

	Environment template ID

	<ENV_TEMPLATE_APP_ID>

	Application ID

murano env-template-delete

Delete an environment template.

Positional arguments

	<ID>

	ID of environment(s) template to delete

murano env-template-list

List the environments templates.

murano env-template-show

Display environment template details.

Positional arguments

	<ID>

	Environment template ID

murano env-template-update

Update an environment template.

Positional arguments

	<ID>

	Environment template ID

	<ENV_TEMPLATE_NAME>

	Environment template name

murano environment-create

Create an environment.

Positional arguments

	<ENVIRONMENT_NAME>

	Environment name

murano environment-delete

Delete an environment.

Positional arguments

	<NAME or ID>

	ID or name of environment(s) to delete

Optional arguments

	–abandon

	If set will abandon environment without deleting any of its resources

murano environment-list

List the environments.

murano environment-rename

Rename an environment.

Positional arguments

	<NAME or ID>

	Environment ID or name

	<ENVIRONMENT_NAME>

	A name to which the environment will be renamed

murano environment-show

Display environment details.

Positional arguments

	<NAME or ID>

	Environment ID or name

murano package-create

Create an application package.

Optional arguments

	-t <HEAT_TEMPLATE>, –template <HEAT_TEMPLATE>

	Path to the Heat template to import as an Application Definition

	-c <CLASSES_DIRECTORY>, –classes-dir <CLASSES_DIRECTORY>

	Path to the directory containing application classes

	-r <RESOURCES_DIRECTORY>, –resources-dir <RESOURCES_DIRECTORY>

	Path to the directory containing application resources

	-n <DISPLAY_NAME>, –name <DISPLAY_NAME>

	Display name of the Application in Catalog

	-f <full-name>, –full-name <full-name>

	Fully-qualified name of the Application in Catalog

	-a <AUTHOR>, –author <AUTHOR>

	Name of the publisher

	–tags [<TAG1 TAG2> [<TAG1 TAG2> ...]]

	A list of keywords connected to the application

	-d <DESCRIPTION>, –description <DESCRIPTION>

	Detailed description for the Application in Catalog

	-o <PACKAGE_NAME>, –output <PACKAGE_NAME>

	The name of the output file archive to save locally

	-u <UI_DEFINITION>, –ui <UI_DEFINITION>

	Dynamic UI form definition

	–type TYPE

	Package type. Possible values: Application or Library

	-l <LOGO>, –logo <LOGO>

	Path to the package logo

murano package-delete

Delete a package.

Positional arguments

	<ID>

	Package ID to delete

murano package-download

Download a package to a filename or stdout.

Positional arguments

	<ID>

	Package ID to download

	file

	Filename for download (defaults to stdout)

murano package-import

Import a package. FILE can be either a path to a zip file, URL or a FQPN.
categories can be separated by a comma.

Positional arguments

	<FILE>

	URL of the murano zip package, FQPN, or path to zip package

Optional arguments

	-c [<CAT1 CAT2 CAT3> [<CAT1 CAT2 CAT3> ...]], –categories [<CAT1 CAT2 CAT3> [<CAT1 CAT2 CAT3> ...]]

	Category list to attach

	–is-public

	Make the package available for user from other project

	–package-version VERSION

	Version of the package to use from repository (ignored when importing with
multiple packages)

	–exists-action {a,s,u}

	Default action when package already exists

murano package-list

List available packages.

Optional arguments

–include-disabled

murano package-show

Display details for a package.

Positional arguments

	<ID>

	Package ID to show

murano service-show

Positional arguments

	<ID>

	Environment ID to show applications from

Optional arguments

-p <PATH>, –path <PATH>

Level of detalization to show. Leave empty to browse
all services in the environment

Glossary

Miscellaneous

Background Concepts for Murano

	Murano workflow

Tutorials

	Building Murano Image

	Murano automated tests description

Guidelines

	Contributing to Murano

	Development Guidelines

Gerrit review dashboard

	Murano Gerrit Dashboard

API specification

	Murano API v1 specification

Murano workflow

What happens when a component is being created in an environment? This document
will use the Telnet package referenced elsewhere as an example. It assumes the
package has been previously uploaded to Murano.

Step 1. Begin deployment

The API sends a message that instructs murano-engine, the workflow component of
Murano, to deploy an environment. The message consists of a JSON document
containing the class types required to create the environment, as well as any
parameters the user selected prior to deployment. Examples are:

	An Class: Environment object (io.murano.Environment) with a name

	An object (or objects) referring to networks that need to be created
or that already exist

	A list of Applications (e.g. io.murano.apps.linux.Telnet). Each Application
will contain, or will reference, anything it requires. The Telnet example,
has a property called instance whose contract states it must be of type
io.murano.resources.Instance. In turn the Instance has properties it requires
(like a name, a flavor, a keypair name).

Each object in this model has an ID so that the state of each can be tracked.

The classes that are required are determined by the application’s manifest. In
the Telnet example only one class is explicitly
required; the telnet application definition.

The Telnet class definition refers to several other
classes. It extends Class: Application and it requires an Class: Instance.
It also refers to the Class: Environment in which it will be contained,
sends reports through the environment’s Class: StatusReporter
and adds security group rules to the Class: SecurityGroupManager.

Step 2. Load definitions

The engine makes a series of requests to the API to download packages it
needs. These requests pass the class names the environment will require, and
during this stage the engine will validate that all the required classes exist
and are accessible, and will begin creating them. All Classes whose workflow
sections contain an initialize fragment are then initialized. A typical initialization
order would be (defined by the ordering in the model sent to the murano-engine):

	Class: Network

	Class: Instance

	Class: Object

	Class: Environment

Step 3. Deploy resources

The workflow defined in Environment.deploy is now executed. The first step
typically is to initialize the messaging component that will pay attention
to murano-agent (see later). The next stage is to deploy each application the
environment knows about in turn, by running deploy() for each application.
This happens concurrently for all the applications belonging to an instance.

In the Telnet example (under Workflow), the workflow
dictates sending a status message (via the environment’s reporter, and
configuring some security group rules. It is at this stage that the engine
first contacts Heat to request information about any pre-existing resources
(and there will be none for a fresh deploy) before updating the new Heat
template with the security group information.

Next it instructs the engine to deploy the instance it relies on. A large
part of the interaction with Heat is carried out at this stage; the first
thing an Instance does is add itself to the environment’s network. Since the
network doesn’t yet exist, murano-engine runs the neutron network workflow
which pushes template fragments to Heat. These fragments can define:
* Networks
* Subnets
* Router interfaces

Once this is done the Instance itself constructs a Heat template fragment and
again pushes it to Heat. The Instance will include a userdata script that
is run when the instance has started up, and which will configure and run
murano-agent.

Step 4. Software configuration via murano-agent

If the workflow includes murano-agent components (and the telnet example does),
typically the application workflow will execute them as the next step.

In the telnet example, the workflow instructs the engine to load
DeployTelnet.yaml as YAML, and pass it to the murano-agent running on the
configured instance. This causes the agent to execute the EntryPoint defined
in the agent script (which in this case deploys some packages and sets some
iptables rules).

Step 5. Done

After execution is finished, the engine sends a last message indicating that
fact; the API receives it and marks the environment as deployed.

Building Murano Image

	MS Windows image builder for OpenStack Murano
	Introduction

	MS Windows Versions

	Getting Started

	Run

	Use cases

	Linux Image

	Upload image into glance
	Murano image types

MS Windows image builder for OpenStack Murano

Introduction

This repository contains MS Windows templates, powershell scripts and bash scripted logic used to create qcow2 images
for QEMU/KVM based virtual machines used in OpenStack.

MS Windows Versions

Supported by builder versions with en_US localization:

	Windows 2012 R2

	Windows 2012 R2 Core

	Windows 2008 R2

	Windows 2008 R2 Core

Getting Started

Trial versions of Windows 2008 R2 / 2012 R2 used by default. You could use these images for 180 days without activation.
You could download evaluation versions from official Microsoft website:

	[Windows 2012 R2 - download] [https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2012-r2]

	[Windows 2008 R2 - download] [https://www.microsoft.com/en-us/download/details.aspx?id=11093]

System requirements

	Debian based Linux distribution, like Ubuntu, Mint and so on.

	Packages required:
qemu-kvm virt-manager virt-goodies virtinst bridge-utils libvirt-bin
uuid-runtime samba samba-common cifs-utils

	User should be able to run sudo without password prompt!

sudo echo "${USER} ALL = NOPASSWD: ALL" > /etc/sudoers.d/${USER}
sudo chmod 440 /etc/sudoers.d/${USER}

	Free disk space > 50G on partition where script will spawn virtual machines because of 40G required by virtual
machine HDD image.

	Internet connectivity.

	Samba shared resource.

Configuring builder

Configuration parameters to tweak:

[default]

	workdir - place where script would prepare all software required by build scenarios. By default is not set,
i.e. script directory would used as root of working space.

	vmsworkdir - must contain valid path, this parameter tells script where it should spawn virtual machines.

	runparallel - true of false, false set by default. This parameter describes how to start virtual machines,
one by one or in launch them in background.

[samba]

	mode - local or remote. In local mode script would try to install and configure Samba server locally. If set
to remote, you should also provide information about connection.

	host - in local mode - is 192.168.122.1, otherwise set proper ip address.

	user - set to guest by default in case of guest rw access.

	domain - Samba server user domain, if not set host value used.

	password - Samba server user password.

	image-builder-share - Samba server remote directory.

MS Windows install preparation:

[win2k12r2] or [win2k8r2] - shortcuts for 2012 R2 and 2008 R2.

	enabled - true of false, include or exclude release processing by script.

	editions - standard, core or both(space used as delimiter).

	iso - local path to iso file

By default [win2k8r2] - disabled, if you need you can enable this release in config.ini file.

Run

Preparation

Run chmod +x *.sh in builder directory to make script files executable.

Command line parameters:

runme.sh - the main script

	--help - shows usage

	--forceinstall-dependencies - Runs dependencies install.

	--check-smb - Run checks or configuration of Samba server.

	--download-requirements - Download all required and configures software except MS Windows ISO.

	--show-configured - Shows configured and available to use MS Windows releases.

	--run - normal run

Experimental options:

	--config-file - Set configuration file location instead of default.

Use cases

All examples below describes changes in config.ini file

	I want to build one image for specific version and edition. For example: version - 2012 R2 and edition -
standard. Steps to reach the goal:

	Disable [win2k8r2] from script processing.

[win2k8r2]
enabled=false

	Update [win2k12r2] with desired edition(standard).

[win2k12r2]
enabled=true
editions=standard

	Execute runme.sh --run

	I want to build two images for specific version with all supported by script editions. For example: 2012 R2 and
editions - standard and core. Steps to reach the goal:

	Disable [win2k8r2] from script processing.

[win2k8r2]
enabled=false

	Update [win2k12r2] with desired editions(standard and core).

[win2k12r2]
enabled=true
editions=standard core

	Execute runme.sh --run

	I want to build two images for all supported by script versions with specific editions. For example: versions -
2012 R2 and 2008 R2 and edition - core. Steps to reach the goal:

	Update [win2k8r2] with desired edition(core).

[win2k8r2]
enabled=true
editions=core

	Update [win2k12r2] with desired edition(core).

[win2k12r2]
enabled=true
editions=core

	Execute runme.sh --run

Linux Image

At the moment the best way to build a Linux image with the murano agent is
to use disk image builder.

Note

Disk image builder requires sudo rights

The process is quite simple. Let’s assume that you use a directory ~/git
for cloning git repositories:

export GITDIR=~/git
mkdir -p $GITDIR

Clone the components required to build an image to that directory:

cd $GITDIR
git clone git://git.openstack.org/openstack/murano
git clone git://git.openstack.org/openstack/murano-agent

Install diskimage-builder

sudo pip install diskimage-builder

Install additional packages required by disk image builder:

sudo apt-get install qemu-utils curl python-tox

Export paths where additional dib elements are located:

export ELEMENTS_PATH=$GITDIR/murano/contrib/elements:$GITDIR/murano-agent/contrib/elements

Build Ubuntu-based image with the murano agent:

disk-image-create vm ubuntu murano-agent -o murano-agent.qcow2

If you need a Fedora based image, replace ‘ubuntu’ to ‘fedora’ in the last command.

It’ll take a while (up to 30 minutes if your hard drive and internet connection are slow).

When you are done upload the murano-agent.qcow2 image to glance and play :)

Upload image into glance

To deploy applications with murano, virtual machine images should be uploaded into glance in a special way - murano_image_info property should be set.

	Use the OpenStack client image create command to import your disk image to glance:

openstack image create --public \
> --disk-format qcow2 --container-format bare \
> --file <IMAGE_FILE> --property <IMAGE_METADATA> <NAME>

Replace the command line arguments to openstack image create with the appropriate values for your environment and disk image:

	Replace <IMAGE_FILE> with the local path to the image file to upload. E.g. ws-2012-std.qcow2.

	Replace <IMAGE_METADATA> with the following property string

	Replace <NAME> with the name that users will refer to the disk image by. E.g. ws-2012-std

murano_image_info='{"title": "Windows 2012 Standard Edition", "type": "windows.2012"}'

where:

	title - user-friendly description of the image

	type - murano image type, see Murano image types

	To update metadata of the existing image run the command:

openstack image set --property <IMAGE_MATADATA> <IMAGE_ID>

	Replace <IMAGE_METADATA> with murano_image_info property, e.g.

	Replace <IMAGE_ID> with image id from the previous command output.

murano_image_info='{"title": "Windows 2012 Standard Edition", "type": "windows.2012"}'

Warning

The value of the –property argument (named murano_image_info) is a JSON string.
Only double quotes are valid in JSON, so please type the string exactly as in the example above.

Note

Existing images could be marked in a simple way in the horizon UI with the murano dashboard installed.
Navigate to Applications -> Manage -> Images -> Mark Image and fill up a form:

	Image - ws-2012-std

	Title - My Prepared Image

	Type - Windows Server 2012

After these steps desired image can be chosen in application creation wizard.

Murano image types

	Type Name
	Description

	windows.2012
	Windows Server 2012

	linux
	Generic Linux images, Ubuntu / Debian, RedHat / Centos, etc

	cirros.demo
	Murano demo image, based on CirrOS

Murano automated tests description

This page describes automated tests for a Murano project:

	where tests are located

	how they are run

	how to execute tests on a local machine

	how to find the root of problems with FAILed tests

Murano continuous integration service

Murano project has separate CI server, which runs tests for all commits and
verifies that new code does not break anything.

Murano CI uses OpenStack QA cloud for testing infrastructure.

Murano CI url: https://murano-ci.mirantis.com/jenkins/ Anyone can login
to that server, using launchpad credentials.

There you can find each job for each repository: one for murano and
another one for murano-dashboard.

	gate-murano-dashboard-ubuntu* verifies each commit to
the murano-dashboard repository

	gate-murano-ubuntu* verifies each commit to the murano repository

Other jobs allow one to build and test Murano documentation and to perform other
useful work to support the Murano CI infrastructure.
All jobs are run following a fresh installation of the operating system and all components
are installed on each run.

UI tests

The Murano project has a web user interface and all possible user scenarios
should be tested.
All UI tests are located at
https://git.openstack.org/cgit/openstack/murano-dashboard/tree/muranodashboard/tests/functional.

Automated tests for the Murano web UI are written in Python using the special
Selenium library. This library is used to automate web browser interactions
with Python. See official Selenium documentation [https://selenium-python.readthedocs.org/]
for details.

Prerequisites:

	Install the Python module called nose using either the
easy_install nose or pip install nose command.
This will install the nose libraries, as well as the nosetests script,
which you can use to automatically discover and run tests.

	Install external Python libraries, which are required for the Murano web UI
tests: testtools and selenium.

	Verify that you have one of the following web browsers installed:

	Mozilla Firefox 46.0

Note

If you do not have Firefox package out of the box,
install and remove it. Otherwise, you will need to install
dependant libraries manually. To downgrade Firefox:

apt-get remove firefox
wget https://ftp.mozilla.org/pub/firefox/releases/46.0/linux-x86_64/en-US/firefox-46.0.tar.bz2
tar -xjf firefox-46.0.tar.bz2
rm -rf /opt/firefox
mv firefox /opt/firefox46
ln -s /opt/firefox46/firefox /usr/bin/firefox

	Google Chrome

	To run the tests on a remote server, configure the remote X server.
Use VNC Software to see the test results in real-time.

	Specify the display environment variable:

$DISPLAY=: <value>

	Configure remote X server and VNC Software by typing:

apt-get install xvfb xfonts-100dpi xfonts-75dpi xfonts-cyrillic xorg dbus-x11
"Xvfb -fp "/usr/share/fonts/X11/misc/" :$DISPLAY -screen 0 "1280x1024x16" &"
apt-get install --yes x11vnc
x11vnc -bg -forever -nopw -display :$DISPLAY -ncache 10
sudo iptables -I INPUT 1 -p tcp --dport 5900 -j ACCEPT

Download and run tests

To download and run the tests:

	Verify that all additional components has been installed.

	Clone the murano-dashboard git repository:

git clone git://git.openstack.org/openstack/murano-dashboard

	Change the default settings:

	Specify the Murano Repository URL variable for Horizon local settings
in murano_dashboard/muranodashboard/local/local_settings.d/_50_murano.py:

MURANO_REPO_URL = 'http://localhost:8099'

	Copy muranodashboard/tests/functional/config/config.conf.sample to
config.conf.

	Set appropriate URLs and credentials for your OpenStack lab.
Only Administrator user credentials are appropriate.

[murano]

horizon_url = http://localhost/dashboard
murano_url = http://localhost:8082
user = ***
password = ***
tenant = ***
keystone_url = http://localhost:5000/v3

All tests are kept in sanity_check.py and divided into 10 test suites:

	TestSuiteSmoke - verification of Murano panels; checks that they can be open
without errors.

	TestSuiteEnvironment - verification of all operations with environment are
finished successfully.

	TestSuiteImage - verification of operations with images.

	TestSuiteFields - verification of custom fields validators.

	TestSuitePackages - verification of operations with Murano packages.

	TestSuiteApplications - verification of Application Catalog page and of
application creation process.

	TestSuiteAppsPagination - verification of apps pagination in case of many
applications installed.

	TestSuiteRepository - verification of importing packages and bundles.

	TestSuitePackageCategory - verification of main operations with categories.

	TestSuiteCategoriesPagination - verification of categories pagination
in case of many categories created.

	TestSuiteMultipleEnvironments - verification of ability to apply action
to multiple environments.

To run the tests follow these instructions:

	To run all tests:

nosetests sanity_check.py

	To run a single suite:

nosetests sanity_check.py:<test suite name>

	To run a single test:

nosetests sanity_check.py:<test suite name>.<test name>

In case of successful execution, you should see something like this:

.........................
Ran 34 tests in 1.440s
OK

In case of failure, the folder with screenshots of the last operation of
tests that finished with errors would be created.
It is located in muranodashboard/tests/functional folder.

There are also a number of command line options that can be used to control
the test execution and generated outputs. For more details about nosetests,
type:

nosetests -h

Tempest tests

All Murano services have tempest-based automated tests, which verify
API interfaces and deployment scenarios.
Tempest tests for Murano are located at https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional.

The following Python files contain basic test suites for different Murano components.

API tests

Murano API tests are run on the devstack gate located at
https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/api.

	test_murano_envs.py contains test suite with actions on murano
environments (create, delete, get, and others).

	test_murano_sessions.py contains test suite with actions on murano
sessions (create, delete, get, and others).

	test_murano_services.py contains test suite with actions on murano
services (create, delete, get, and others).

	test_murano_repository.py contains test suite with actions on murano
package repository.

Engine tests

Murano Engine Tests are run on murano-ci at https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/engine:

	base.py contains base test class and tests with actions on deploy
Murano services such as Telnet and Apache.

Command-line interface tests

Murano CLI tests are currently in the middle of creation. The current scope
is read-only operations on a cloud that are hard to test through unit tests.
All tests have description and execution steps in their docstrings.

Contributing to Murano

If you’re interested in contributing to the Murano project,
the following will help get you started.

Contributor License Agreement

In order to contribute to the Murano project, you need to have
signed OpenStack’s contributor’s agreement:

	http://docs.openstack.org/infra/manual/developers.html

	http://wiki.openstack.org/CLA

Project Hosting Details

	
	Bug trackers

	
	General murano tracker: https://launchpad.net/murano

	Python client tracker: https://launchpad.net/python-muranoclient

	Tracker for bugs related to specific apps: https://launchpad.net/murano-apps

	
	Mailing list (prefix subjects with [Murano] for faster responses)

	http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev

	
	Wiki

	https://wiki.openstack.org/wiki/Murano

	
	IRC channel

	
	#murano at FreeNode

	https://wiki.openstack.org/wiki/Meetings#Murano_meeting

	
	Code Hosting

	
	https://git.openstack.org/cgit/openstack/murano

	https://git.openstack.org/cgit/openstack/murano-agent

	https://git.openstack.org/cgit/openstack/murano-dashboard

	https://git.openstack.org/cgit/openstack/python-muranoclient

	
	Code Review

	
	https://review.openstack.org/#/q/murano+AND+status:+open,n,z

	http://docs.openstack.org/infra/manual/developers.html#development-workflow

	
	Murano Design Specifications

	
	https://git.openstack.org/openstack/murano-specs

Development Guidelines

Coding Guidelines

For all the code in Murano we have a rule - it should pass PEP 8 [http://www.python.org/dev/peps/pep-0008/].

To check your code against PEP 8 run:

tox -e pep8

See also

	https://pep8.readthedocs.org/en/latest/

	https://flake8.readthedocs.org

	http://docs.openstack.org/developer/hacking/

Blueprints and Specs

Murano team uses the murano-specs [http://git.openstack.org/cgit/openstack/murano-specs] repository for its blueprint and
specification (specs) review process. See Launchpad [http://blueprints.launchpad.net/murano] to propose or
see the status of a current blueprint.

Testing Guidelines

Murano has a suite of tests that are run on all submitted code,
and it is recommended that developers execute the tests themselves to
catch regressions early. Developers are also expected to keep the
test suite up-to-date with any submitted code changes.

Unit tests are located at murano/tests.

Murano’s suite of unit tests can be executed in an isolated environment
with Tox [http://tox.testrun.org/]. To execute the unit tests run the following from the root of
Murano repo on Python 2.7:

tox -e py27

Documentation Guidelines

Murano dev-docs are written using Sphinx / RST and located in the main repo
in doc directory.

The documentation in docstrings should follow the PEP 257 [http://www.python.org/dev/peps/pep-0257/] conventions
(as mentioned in the PEP 8 [http://www.python.org/dev/peps/pep-0008/] guidelines).

More specifically:

	Triple quotes should be used for all docstrings.

	If the docstring is simple and fits on one line, then just use
one line.

	For docstrings that take multiple lines, there should be a newline
after the opening quotes, and before the closing quotes.

	Sphinx [http://sphinx.pocoo.org/markup/index.html] is used to build documentation, so use the restructured text
markup to designate parameters, return values, etc. Documentation on
the sphinx specific markup can be found here:

Run the following command to build docs locally.

tox -e docs

Murano Gerrit Dashboard

Description

If you would like to contribute to murano by reviewing patches to
murano-related projects — you can use this gerrit dashboard, or create your own
using
Gerrit Dash Creator [http://gerrit-dash-creator.readthedocs.io/en/latest/]

URL

https://review.openstack.org/#/dashboard/?foreach=%28project%3A%5E.%2A%2F.%2Amurano.%2A+OR+project%3Aopenstack%2Fyaql%29+NOT+label%3AWorkflow%3C%3D%2D1+NOT+label%3ACode%2DReview%3C%3D%2D2+status%3Aopen&title=Murano&My+Patches=owner%3Aself&You+are+a+reviewer%2C+but+haven%27t+voted+in+the+current+revision=NOT+label%3ACode%2DReview%3C%3D2%2Cself+reviewer%3Aself+NOT+owner%3Aself&Need+Feedback=NOT+label%3ACode%2DReview%3C%3D2+NOT+label%3AVerified%3C%3D%2D1+NOT+owner%3Aself&Passed+Jenkins%2C+No+Negative+Feedback=label%3ACode%2DReview%3E%3D1+NOT+label%3ACode%2DReview%3C%3D%2D1+AND+NOT+label%3AVerified%3C%3D%2D1+NOT+owner%3Aself+NOT+reviewer%3Aself+limit%3A50&Maybe+Review%3F=NOT+owner%3Aself+NOT+reviewer%3Aself+limit%3A25&My+%2B1s=label%3ACode%2DReview%3D1%2Cself+limit%3A25&Need+final+%2B2=label%3ACode%2DReview%3E%3D2+NOT+label%3ACode%2DReview%3C%3D%2D1+NOT+label%3AVerified%3C%3D%2D1+NOT+label%3ACode%2DReview%3C%3D2%2Cself+NOT+owner%3Aself+limit%3A25&My+%2B2s=label%3ACode%2DReview%3D2%2Cself+limit%3A25

View this dashboard [https://review.openstack.org/#/dashboard/?foreach=%28project%3A%5E.%2A%2F.%2Amurano.%2A+OR+project%3Aopenstack%2Fyaql%29+NOT+label%3AWorkflow%3C%3D%2D1+NOT+label%3ACode%2DReview%3C%3D%2D2+status%3Aopen&title=Murano&My+Patches=owner%3Aself&You+are+a+reviewer%2C+but+haven%27t+voted+in+the+current+revision=NOT+label%3ACode%2DReview%3C%3D2%2Cself+reviewer%3Aself+NOT+owner%3Aself&Need+Feedback=NOT+label%3ACode%2DReview%3C%3D2+NOT+label%3AVerified%3C%3D%2D1+NOT+owner%3Aself&Passed+Jenkins%2C+No+Negative+Feedback=label%3ACode%2DReview%3E%3D1+NOT+label%3ACode%2DReview%3C%3D%2D1+AND+NOT+label%3AVerified%3C%3D%2D1+NOT+owner%3Aself+NOT+reviewer%3Aself+limit%3A50&Maybe+Review%3F=NOT+owner%3Aself+NOT+reviewer%3Aself+limit%3A25&My+%2B1s=label%3ACode%2DReview%3D1%2Cself+limit%3A25&Need+final+%2B2=label%3ACode%2DReview%3E%3D2+NOT+label%3ACode%2DReview%3C%3D%2D1+NOT+label%3AVerified%3C%3D%2D1+NOT+label%3ACode%2DReview%3C%3D2%2Cself+NOT+owner%3Aself+limit%3A25&My+%2B2s=label%3ACode%2DReview%3D2%2Cself+limit%3A25]

Configuration

[dashboard]
title = Murano
description = Murano Review Inbox
foreach = (project:^.*/.*murano.* OR project:openstack/yaql) NOT label:Workflow<=-1 NOT label:Code-Review<=-2 status:open

[section "My Patches"]
query = owner:self

[section "You are a reviewer, but haven't voted in the current revision"]
query = NOT label:Code-Review<=2,self reviewer:self NOT owner:self

[section "Need Feedback"]
query = NOT label:Code-Review<=2 NOT label:Verified<=-1 NOT owner:self

[section "Passed Jenkins, No Negative Feedback"]
query = label:Code-Review>=1 NOT label:Code-Review<=-1 AND NOT label:Verified<=-1 NOT owner:self NOT reviewer:self limit:50

[section "Maybe Review?"]
query = NOT owner:self NOT reviewer:self limit:25

[section "My +1s"]
query = label:Code-Review=1,self limit:25

[section "Need final +2"]
query = label:Code-Review>=2 NOT label:Code-Review<=-1 NOT label:Verified<=-1 NOT label:Code-Review<=2,self NOT owner:self limit:25

[section "My +2s"]
query = label:Code-Review=2,self limit:25

Murano API v1 specification

	General information

	Glossary

	Environment API

	Environment configuration API

	Environment model API

	Environment deployments API

	Application management API

	Statistic API

	Actions API

	Static Actions API

	Application catalog API

	Packages

	Update a package

	Categories

	Environment template API

General information

	Introduction

The murano service API is a programmatic interface used for interaction with
murano. Other interaction mechanisms like the murano dashboard or the murano CLI
should use the API as an underlying protocol for interaction.

	Allowed HTTPs requests

	POST : To create a resource

	GET : Get a resource or list of resources

	DELETE : To delete resource

	PATCH : To update a resource

	Description Of Usual Server Responses

	200 OK - the request was successful.

	201 Created - the request was successful and a resource was created.

	204 No Content - the request was successful but there is no representation to return (i.e. the response is empty).

	400 Bad Request - the request could not be understood or required parameters were missing.

	401 Unauthorized - authentication failed or user didn’t have permissions for requested operation.

	403 Forbidden - access denied.

	404 Not Found - resource was not found

	405 Method Not Allowed - requested method is not supported for resource.

	406 Not Acceptable - the requested resource is only capable of generating content not acceptable
according to the Accept headers sent in the request.

	409 Conflict - requested method resulted in a conflict with the current state of the resource.

	Response of POSTs and PUTs

All POST and PUT requests by convention should return the created object
(in the case of POST, with a generated ID) as if it was requested by
GET.

	Authentication

All requests include a keystone authentication token header
(X-Auth-Token). Clients must authenticate with keystone before
interacting with the murano service.

Glossary

	Environment

The environment is a set of applications managed by a single project (tenant). They could be related logically with each other or not.
Applications within a single environment may comprise of complex configuration while applications in different environments are always
independent from one another. Each environment is associated with a single OpenStack project.

	Session

Since murano environments are available for local modification for different users and from different locations, it’s needed to store local modifications somewhere.
Sessions were created to provide this opportunity. After a user adds an application to the environment - a new session is created.
After a user sends an environment to deploy, a session with a set of applications changes status to deploying and all other open sessions for that environment become invalid.
One session could be deployed only once.

	Object Model

Applications are defined in MuranoPL object model, which is defined as a JSON object.
The murano API doesn’t know anything about it.

	Package

A .zip archive, containing instructions for an application deployment.

	
	Environment-Template

	The environment template is the specification of a set of applications managed by a single project, which are
related to each other. The environment template is stored in an environment template catalog, and it can be
managed by the user (creation, deletion, updating). Finally, it can be deployed on OpenStack by translating
into an environment.

Environment API

	Attribute
	Type
	Description

	id
	string
	Unique ID

	name
	string
	User-friendly name

	created
	datetime
	Creation date and time in ISO format

	updated
	datetime
	Modification date and time in ISO format

	tenant_id
	string
	OpenStack project ID

	version
	int
	Current version

	networking
	string
	Network settings

	acquired_by
	string
	Id of a session that acquired this
environment (for example is deploying it)

	status
	string
	Deployment status: ready, pending,
deploying

Common response codes

	Code
	Description

	200
	Operation completed successfully

	403
	User is not authorized to perform the operation

List environments

Request

	Method
	URI
	Description

	GET
	/environments
	Get a list of existing
Environments

Parameters:

	all_tenants - boolean, indicates whether environments from all projects are listed.
True environments from all projects are listed. Admin user required.
False environments only from current project are listed (default like option unspecified).

Response

This call returns a list of environments. Only the basic properties are
returned.

{
 "environments": [
 {
 "status": "ready",
 "updated": "2014-05-14T13:02:54",
 "networking": {},
 "name": "test1",
 "created": "2014-05-14T13:02:46",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "2fa5ab704749444bbeafe7991b412c33"
 },
 {
 "status": "ready",
 "updated": "2014-05-14T13:02:55",
 "networking": {},
 "name": "test2",
 "created": "2014-05-14T13:02:51",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "744e44812da84e858946f5d817de4f72"
 }
]
}

Create environment

	Attribute
	Type
	Description

	name
	string
	Environment name; at least one non-white space symbol

Request

	Method
	URI
	Description

	POST
	/environments
	Create new Environment

	Content-Type
application/json

	
	Example

	{“name”: “env_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
 "version": 0
}

Update environment

	Attribute
	Type
	Description

	name
	string
	Environment name; at least one non-white space symbol

Request

	Method
	URI
	Description

	PUT
	/environments/<env_id>
	Update an existing Environment

	Content-Type
application/json

	Example
{“name”: “env_name_changed”}

Response

	Content-Type

	application/json

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_name_changed",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:45:54Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
 "version": 0
}

	Code
	Description

	200
	Edited environment

	400
	Environment name must contain at least one non-white space
symbol

	403
	User is not authorized to access environment

	404
	Environment not found

	409
	Environment with specified name already exists

Get environment details

Request

Return information about the environment itself and about applications, including this environment.

	Method
	URI
	Header
	Description

	GET
	/environments/{id}
	X-Configuration-Session (optional)
	Response detailed information
about Environment including
child entities

Response

	Content-Type

	application/json

{
 "status": "ready",
 "updated": "2014-05-14T13:12:26",
 "networking": {},
 "name": "quick-env-2",
 "created": "2014-05-14T13:09:55",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 1,
 "services": [
 {
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "name": "exgchhv6nbika2",
 "ipAddresses": [
 "10.0.0.200"
],
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "14cce9d9-aaa1-4f09-84a9-c4bb859edaff"
 }
 },
 "name": "rewt4w56",
 "?": {
 "status": "ready",
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "446373ef-03b5-4925-b095-6c56568fa518"
 }
 }
],
 "id": "20d4a012628e4073b48490a336a8acbf"
}

Delete environment

Request

	Method
	URI
	Description

	DELETE
	/environments/{id}?abandon
	Remove specified Environment.

Parameters:

	abandon - boolean, indicates how to delete environment. False is used if
all resources used by environment must be destroyed; True is used when just
database must be cleaned

Response

	Code
	Description

	200
	OK. Environment deleted successfully

	403
	User is not allowed to delete this resource

	404
	Not found. Specified environment doesn`t exist

Environment configuration API

Multiple sessions could be opened for one environment
simultaneously, but only one session going to be deployed. First session that
starts deploying is going to be deployed; other ones become invalid and could
not be deployed at all.
User could not open new session for environment that in
deploying state (that’s why we call it “almost lock free” model).

	Attribute
	Type
	Description

	id
	string
	Session unique ID

	environment_id
	string
	Environment that going to be modified
during this session

	created
	datetime
	Creation date and time in ISO format

	updated
	datetime
	Modification date and time in ISO format

	user_id
	string
	Session owner ID

	version
	int
	Environment version for which
configuration session is opened

	state
	string
	Session state. Could be: open, deploying,
deployed

Configure environment / open session

During this call a new working session is created with its ID returned in response body.
Notice that the session ID should be added to request headers with name X-Configuration-Session
in subsequent requests when necessary.

Request

	Method
	URI
	Description

	POST
	/environments/<env_id>/configure
	Creating new configuration
session

Response

	Content-Type

	application/json

{
 "id": "257bef44a9d848daa5b2563779714820",
 "updated": datetime.datetime(2014, 5, 14, 14, 17, 58, 949358),
 "environment_id": "744e44812da84e858946f5d817de4f72",
 "ser_id": "4e91d06270c54290b9dbdf859356d3b3",
 "created": datetime.datetime(2014, 5, 14, 14, 17, 58, 949305),
 "state": "open",
 "version": 0L
}

	Code
	Description

	200
	Session created successfully

	401
	User is not authorized to access this session

	403
	Could not open session for environment, environment has
deploying status

Deploy session

With this request all local changes made within the environment start to deploy on OpenStack.

Request

	Method
	URI
	Description

	POST
	/environments/<env_id>/sessions/
<session_id>/deploy
	
	Deploy changes made in session

	with specified session_id

Response

	Code
	Description

	200
	Session status changes to deploying

	401
	User is not authorized to access this session

	403
	Session is already deployed or deployment is in progress

	404
	Not found. Specified session doesn`t exist

Get session details

Request

	Method
	URI
	Description

	GET
	/environments/<env_id>/sessions/
<session_id>
	Get details about session
with specified session_id

Response

{
 "id": "4aecdc2178b9430cbbb8db44fb7ac384",
 "environment_id": "4dc8a2e8986fa8fa5bf24dc8a2e8986fa8",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:54Z",
 "user_id": "d7b501094caf4daab08469663a9e1a2b",
 "version": 0,
 "state": "deploying"
}

	Code
	Description

	200
	Session details information received

	401
	User is not authorized to access this session

	403
	Session is invalid

	404
	Not found. Specified session doesn`t exist

Delete session

Request

	Method
	URI
	Description

	DELETE
	/environments/<env_id>/sessions/
<session_id>
	Delete session with specified
session_id

Response

	Code
	Description

	200
	Session is deleted successfully

	401
	User is not authorized to access this session

	403
	Session is in deploying state and could not be deleted

	404
	Not found. Specified session doesn`t exist

Environment model API

Get environment model

	Method
	URI
	Header
	Description

	GET
	/environments/<env_id>/model/<path>
	X-Configuration-Session
(optional)
	Get an Environment model

Specifying <path> allows to get a specific section of the model, for example
defaultNetworks, region or ? or any of the subsections.

Response

	Content-Type

	application/json

{
 "defaultNetworks": {
 "environment": {
 "internalNetworkName": "net_two",
 "?": {
 "type": "io.murano.resources.ExistingNeutronNetwork",
 "id": "594e94fcfe4c48ef8f9b55edb3b9f177"
 }
 },
 "flat": null
 },
 "region": "RegionTwo",
 "name": "new_env",
 "regions": {
 "": {
 "defaultNetworks": {
 "environment": {
 "autoUplink": true,
 "name": "new_env-network",
 "externalRouterId": null,
 "dnsNameservers": [],
 "autogenerateSubnet": true,
 "subnetCidr": null,
 "openstackId": null,
 "?": {
 "dependencies": {
 "onDestruction": [{
 "subscriber": "c80e33dd67a44f489b2f04818b72f404",
 "handler": null
 }]
 },
 "type": "io.murano.resources.NeutronNetwork/0.0.0@io.murano",
 "id": "e145b50623c04a68956e3e656a0568d3",
 "name": null
 },
 "regionName": "RegionOne"
 },
 "flat": null
 },
 "name": "RegionOne",
 "?": {
 "type": "io.murano.CloudRegion/0.0.0@io.murano",
 "id": "c80e33dd67a44f489b2f04818b72f404",
 "name": null
 }
 },
 "RegionOne": "c80e33dd67a44f489b2f04818b72f404",
 "RegionTwo": {
 "defaultNetworks": {
 "environment": {
 "autoUplink": true,
 "name": "new_env-network",
 "externalRouterId": "e449bdd5-228c-4747-a925-18cda80fbd6b",
 "dnsNameservers": ["8.8.8.8"],
 "autogenerateSubnet": true,
 "subnetCidr": "10.0.198.0/24",
 "openstackId": "00a695c1-60ff-42ec-acb9-b916165413da",
 "?": {
 "dependencies": {
 "onDestruction": [{
 "subscriber": "f8cb28d147914850978edb35eca156e1",
 "handler": null
 }]
 },
 "type": "io.murano.resources.NeutronNetwork/0.0.0@io.murano",
 "id": "72d2c13c600247c98e09e2e3c1cd9d70",
 "name": null
 },
 "regionName": "RegionTwo"
 },
 "flat": null
 },
 "name": "RegionTwo",
 "?": {
 "type": "io.murano.CloudRegion/0.0.0@io.murano",
 "id": "f8cb28d147914850978edb35eca156e1",
 "name": null
 }
 }
 },
 services: []
 "?": {
 "type": "io.murano.Environment/0.0.0@io.murano",
 "_actions": {
 "f7f22c174070455c9cafc59391402bdc_deploy": {
 "enabled": true,
 "name": "deploy",
 "title": "deploy"
 }
 },
 "id": "f7f22c174070455c9cafc59391402bdc",
 "name": null
 }
}

	Code
	Description

	200
	Environment model received successfully

	403
	User is not authorized to access environment

	404
	Environment is not found or specified section of the
model does not exist

Update environment model

Request

	Method
	URI
	Header
	Description

	PATCH
	/environments/<env_id>/model/
	X-Configuration-Session
	Update an Environment model

	Content-Type
application/env-model-json-patch

Allowed operations for paths:

	“” (model root): no operations

	“defaultNetworks”: “replace”

	“defaultNetworks/environment”: “replace”

	“defaultNetworks/environment/?/id”: no operations

	“defaultNetworks/flat”: “replace”

	“name”: “replace”

	“region”: “replace”

	”?/type”: “replace”

	”?/id”: no operations

For other paths any operation (add, replace or remove) is allowed.

	Example of request body with JSON-patch

[{
 "op": "replace",
 "path": "/defaultNetworks/flat",
 "value": true
}]

Response

	Content-Type

	application/json

See GET request response.

	Code
	Description

	200
	Environment is edited successfully

	400
	Body format is invalid

	403
	User is not authorized to access environment or specified
operation is forbidden for the given property

	404
	Environment is not found or specified section of the
model does not exist

Environment deployments API

Environment deployment API allows to track changes of environment status, deployment events and errors.
It also allows to browse deployment history.

List Deployments

Returns information about all deployments of the specified environment.

Request

	Method
	URI
	Description

	GET
	/environments/<env_id>/deployments
	Get list of environment deployments

	GET
	

	
/deployments
	
Get list of deployments for all

environments in user’s project

Response

	Content-Type

	application/json

{
 "deployments": [
 {
 "updated": "2014-05-15T07:24:21",
 "environment_id": "744e44812da84e858946f5d817de4f72",
 "description": {
 "services": [
 {
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "ef729199-c71e-4a4c-a314-0340e279add8"
 },
 "name": "xkaduhv7qeg4m7"
 },
 "name": "teslnet1",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "6e437be2-b5bc-4263-8814-6fd57d6ddbd5"
 }
 }
],
 "defaultNetworks": {
 "environment": {
 "name": "test2-network",
 "?": {
 "type": "io.murano.lib.networks.neutron.NewNetwork",
 "id": "b6a1d515434047d5b4678a803646d556"
 }
 },
 "flat": null
 },
 "name": "test2",
 "?": {
 "type": "io.murano.Environment",
 "id": "744e44812da84e858946f5d817de4f72"
 }
 },
 "created": "2014-05-15T07:24:21",
 "started": "2014-05-15T07:24:21",
 "finished": null,
 "state": "running",
 "id": "327c81e0e34a4c93ad9b9052ef42b752"
 }
]
}

	Code
	Description

	200
	Deployments information received successfully

	401
	User is not authorized to access this environment

Application management API

All applications should be created within an environment and all environment modifications are held within the session.
Local changes apply only after successful deployment of an environment session.

Get application details

Using GET requests to applications endpoint user works with list containing all
applications for specified environment. A user can request a whole list,
specific application, or specific attribute of a specific application using tree
traversing. To request a specific application, the user should add to endpoint part
an application id, e.g.: /environments/<env_id>/services/<application_id>. For
selection of specific attribute on application, simply appending part with
attribute name will work. For example to request application name, user
should use next endpoint: /environments/<env_id>/services/<application_id>/name

Request

	Method
	URI
	Header

	GET
	/environments/<env_id>/services/<app_id>
	X-Configuration-Session (optional)

Parameters:

	env_id - environment ID, required

	app_id - application ID, optional

Response

	Content-Type

	application/json

{
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "060715ff-7908-4982-904b-3b2077ff55ef"
 },
 "name": "hbhmyhv6qihln3"
 },
 "name": "dfg34",
 "?": {
 "status": "pending",
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "6e7b8ad5-888d-4c5a-a498-076d092a7eff"
 }
}

Create new application

Create a new application and add it to the murano environment.
Result JSON is calculated in Murano dashboard, which is based on UI definition [https://git.openstack.org/cgit/openstack/murano/tree/doc/source/appdev-guide/muranopackages/dynamic_ui.rst].

Request

	Content-Type

	application/json

	Method
	URI
	Header

	POST
	/environments/<env_id>/services
	X-Configuration-Session

{
 "instance": {
 "flavor": "m1.medium",
 "image": "clod-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"
 },
 "name": "nhekhv6r7mhd4"
 },
 "name": "sdf34sadf",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "190c8705-5784-4782-83d7-0ab55a1449aa"
 }
}

Response

Created application returned

	Content-Type

	application/json

{
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"
 },
 "name": "nhekhv6r7mhd4"
 },
 "name": "sdf34sadf",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "190c8705-5784-4782-83d7-0ab55a1449a1"
 }
}

	Code
	Description

	200
	Application was created successfully

	401
	User is not authorized to perform this action

	403
	Policy prevents this user from performing this action

	404
	Not found. Environment doesn’t exist

	400
	Required header or body are not provided

Update applications

Applications list for environment can be updated.

Request

	Content-Type

	application/json

	Method
	URI
	Header

	PUT
	/environments/<env_id>/services
	X-Configuration-Session

[{
 "instance": {
 "availabilityZone": "nova",
 "name": "apache-instance",
 "assignFloatingIp": true,
 "keyname": "",
 "flavor": "m1.small",
 "image": "146d5523-7b2d-4abc-b0d0-2041f920ce26",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "25185cb6f29b415fa2e438309827a797"
 }
 },
 "name": "ApacheHttpServer",
 "enablePHP": true,
 "?": {
 "type": "com.example.apache.ApacheHttpServer",
 "id": "6e66106d7dcb4748a5c570150a3df80f"
 }
}]

Response

Updated applications list returned

	Content-Type

	application/json

[{
 "instance": {
 "availabilityZone": "nova",
 "name": "apache-instance",
 "assignFloatingIp": true,
 "keyname": "",
 "flavor": "m1.small",
 "image": "146d5523-7b2d-4abc-b0d0-2041f920ce26",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "25185cb6f29b415fa2e438309827a797"
 }
 },
 "name": "ApacheHttpServer",
 "enablePHP": true,
 "?": {
 "type": "com.example.apache.ApacheHttpServer",
 "id": "6e66106d7dcb4748a5c570150a3df80f"
 }
}]

	Code
	Description

	200
	Services are updated successfully

	400
	Required header is not provided

	401
	User is not authorized

	403
	Session is in deploying state and could not be updated
or user is not allowed to update services

	404
	Not found. Specified environment and/or session do not
exist

Delete application from environment

Delete one or all applications from the environment

Request

	Method
	URI
	Header

	DELETE
	/environments/<env_id>/services/<app_id>
	X-Configuration-Session(optional)

Parameters:

	env_id - environment ID, required

	app_id - application ID, optional

Statistic API

Statistic API intends to provide billing feature

Instance environment statistics

Request

Get information about all deployed instances in the specified environment

	Method
	URI

	GET
	/environments/<env_id>/instance-statistics/raw/<instance_id>

Parameters:

	env_id - environment ID, required

	instance_id - ID of the instance for which need to provide statistic information, optional

Response

	Attribute
	Type
	Description

	type
	int
	Code of the statistic object; 200 - instance, 100 - application

	type_name
	string
	Class name of the statistic object

	instance_id
	string
	Id of deployed instance

	active
	bool
	Instance status

	type_title
	string
	User-friendly name for browsing statistic in UI

	duration
	int
	Seconds of instance uptime

	Content-Type

	application/json

[
 {
 "type": 200,
 "type_name": "io.murano.resources.Instance",
 "instance_id": "ef729199-c71e-4a4c-a314-0340e279add8",
 "active": true,
 "type_title": null,
 "duration": 1053,
 }
]

Request

	Method
	URI

	GET
	/environments/<env_id>/instance-statistics/aggregated

Response

	Attribute
	Type
	Description

	type
	int
	Code of the statistic object; 200 - instance, 100 - application

	duration
	int
	Amount uptime of specified type objects

	count
	int
	Quantity of specified type objects

	Content-Type

	
application/json

[
 {
 "duration": 720,
 "count": 2,
 "type": 200
 }
]

General Request Statistics

Request

	Method
	URI

	GET
	/stats

Response

	Attribute
	Type
	Description

	requests_per_tenant
	int
	Number of incoming requests for user project

	errors_per_second
	int
	Class name of the statistic object

	errors_count
	int
	Class name of the statistic object

	requests_per_second
	float
	Average number of incoming request received in one second

	requests_count
	int
	Number of all requests sent to the server

	cpu_percent
	bool
	Current cpu usage

	cpu_count
	int
	Available cpu power is cpu_count * 100%

	host
	string
	Server host-name

	average_response_time
	float
	Average time response waiting, seconds

	Content-Type

	application/json

[
 {
 "updated": "2014-05-15T08:26:17",
 "requests_per_tenant": "{\"726ed856965f43cc8e565bc991fa76c3\": 313}",
 "created": "2014-04-29T13:23:59",
 "cpu_count": 2,
 "errors_per_second": 0,
 "requests_per_second": 0.0266528,
 "cpu_percent": 21.7,
 "host": "fervent-VirtualBox",
 "error_count": 0,
 "request_count": 320,
 "id": 1,
 "average_response_time": 0.55942
 }
]

Actions API

Murano actions are simple MuranoPL methods, that can be called on deployed applications.
Application contains a list with available actions. Actions may return a result.

Execute an action

Generate task with executing specified action. Input parameters may be provided.

Request

	Content-Type

	application/json

	Method
	URI
	Header

	POST
	/environments/<env_id>/actions/<action_id>
	

Parameters:

	env_id - environment ID, required

	actions_id - action ID to execute, required

"{<action_property>: value}"

or

"{}" in case action has no properties

Response

Task ID that executes specified action is returned

	Content-Type

	application/json

{
 "task_id": "620e883070ad40a3af566d465aa156ef"
}

GET action result

Request result value after action execution finish. Not all actions have return values.

Request

	Method
	URI
	Header

	GET
	/environments/<env_id>/actions/<task_id>
	

Parameters:

	env_id - environment ID, required

	task_id - task ID, generated on desired action execution

Response

Json, describing action result is returned. Result type and value are provided.

	Content-Type

	application/json

{
 "isException": false,
 "result": ["item1", "item2"]
}

Static Actions API

Static actions are MuranoPL methods that can be called on a MuranoPL class
without deploying actual applications and usually return a result.

Execute a static action

Invoke public static method of the specified MuranoPL class.
Input parameters may be provided if method requires them.

Request

	Content-Type

	application/json

	Method
	URI
	Header

	POST
	/actions
	

{
 "className": "my.class.fqn",
 "methodName": "myMethod",
 "packageName": "optional.package.fqn",
 "classVersion": "1.2.3",
 "parameters": {
 "arg1": "value1",
 "arg2": "value2"
 }
 }

	Attribute
	Type
	Description

	className
	string
	Fully qualified name of MuranoPL class with static method

	methodName
	string
	Name of the method to invoke

	packageName
	string
	Fully qualified name of a package with the MuranoPL class (optional)

	classVersion
	string
	Class version specification, “=0” by default

	parameters
	object
	Key-value pairs of method parameter names and their values, “{}” by default

Response

JSON-serialized result of the static method execution.

HTTP codes:

	Code
	Description

	200
	OK. Action was executed successfully

	400
	Bad request. The format of the body is invalid, method
doesn’t match provided arguments, mandatory arguments are
not provided

	403
	User is not allowed to execute the action

	404
	Not found. Specified class, package or method doesn’t
exist or method is not exposed

	503
	Unhandled exception in the action

Application catalog API

Manage application definitions in the Application Catalog.
You can browse, edit and upload new application packages (.zip.package archive with all data that required for a service deployment).

Packages

Methods for application package management

Package Properties

	id: guid of a package (fully_qualified_name can also be used for some API functions)

	fully_qualified_name: fully qualified domain name - domain name that specifies exact application location

	name: user-friendly name

	type: package type, “library” or “application”

	description: text information about application

	author: name of application author

	tags: list of short names, connected with the package, which allows to search applications easily

	categories: list of application categories

	class_definition: list of class names used by a package

	is_public: determines whether the package is shared for other projects

	enabled: determines whether the package is browsed in the Application Catalog

	owner_id: id of a project that owns the package

Note

It is possible to use in operator for properties id, category and tag.
For example to get packages with id1, id2, id3 use id=in:id1,id2,id3.

List packages

/v1/catalog/packages?{marker}{limit}{order_by}{type}{category}{fqn}{owned}{id}{catalog}{class_name}{name} [GET]

This is the compound request to list and search through application catalog.
If there are no search parameters all packages that is_public, enabled and belong to the user’s project will be listed.
Default order is by ‘created’ field.
For an admin role all packages are available.

Parameters

	Attribute
	Type
	Description

	catalog
	bool
	If false (default) - search packages, that
current user can edit (own for non-admin,
all for admin)
If true - search packages, that current user
can deploy (i.e. his own + public)

	marker
	string
	A package identifier marker may be
specified. When present only packages which
occur after the identifier ID will be listed

	limit
	string
	When present the maximum number of results
returned will not exceed the specified
value. The typical pattern of limit and
marker is to make an initial limited request
and then to use the ID of the last package
from the response as the marker parameter in
a subsequent limited request.

	order_by
	string
	Allows to sort packages by: fqn, name,
created. Created is default value.

	type
	string
	Allows to point a type of package:
application, library

	category
	string
	Allows to point a categories for a search

	fqn
	string
	Allows to point a fully qualified package
name for a search

	owned
	bool
	Search only from packages owned by current
project

	id
	string
	Allows to point an id for a search

	include_disabled
	bool
	Include disabled packages in a the result

	search
	string
	Gives opportunity to search specified data
by all the package parameters and order
packages

	class_name
	string
	Search only for packages, that use specified
class

	name
	string
	Allows to point a package name for a search

Response 200 (application/json)

{"packages": [
 {
 "id": "fed57567c9fa42c192dcbe0566f8ea33",
 "fully_qualified_name" : "com.example.murano.services.linux.telnet",
 "is_public": false,
 "name": "Telnet",
 "type": "linux",
 "description": "Installs Telnet service",
 "author": "OpenStack, Inc.",
 "created": "2014-04-02T14:31:55",
 "enabled": true,
 "tags": ["linux", "telnet"],
 "categories": ["Utility"],
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
 },
 {
 "id": "fed57567c9fa42c192dcbe0566f8ea31",
 "fully_qualified_name": "com.example.murano.services.windows.WebServer",
 "is_public": true,
 "name": "Internet Information Services",
 "type": "windows",
 "description": "The Internet Information Service sets up an IIS server and joins it into an existing domain",
 "author": "OpenStack, Inc.",
 "created": "2014-04-02T14:31:55",
 "enabled": true,
 "tags": ["windows", "web"],
 "categories": ["Web"],
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
 }]
 }

Upload a new package[POST]

/v1/catalog/packages

See the example of multipart/form-data request, It should contain two parts - text (JSON string) and file object

Request (multipart/form-data)

Content-type: multipart/form-data, boundary=AaB03x
Content-Length: $requestlen

--AaB03x
content-disposition: form-data; name="submit-name"

--AaB03x
Content-Disposition: form-data; name="JsonString"
Content-Type: application/json

{"categories":["web"] , "tags": ["windows"], "is_public": false, "enabled": false}
`categories` - array, required
`tags` - array, optional
`name` - string, optional
`description` - string, optional
`is_public` - bool, optional
`enabled` - bool, optional

--AaB03x
content-disposition: file; name="file"; filename="test.tar"
Content-Type: targz
Content-Transfer-Encoding: binary

$binarydata
--AaB03x--

Response 200 (application/json)

{
 "updated": "2014-04-03T13:00:13",
 "description": "A domain service hosted in Windows environment by using Active Directory Role",
 "tags": ["windows"],
 "is_public": true,
 "id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
 "categories": ["test1"],
 "name": "Active Directory",
 "author": "Mirantis, Inc",
 "created": "2014-04-03T13:00:13",
 "enabled": true,
 "class_definition": [
 "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "com.mirantis.murano.windows.activeDirectory.SecondaryController",
 "com.mirantis.murano.windows.activeDirectory.Controller",
 "com.mirantis.murano.windows.activeDirectory.PrimaryController"
],
 "fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "type": "Application",
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
}

Get package details

/v1/catalog/packages/{id} [GET]

Display details for a package.

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/json)

{
 "updated": "2014-04-03T13:00:13",
 "description": "A domain service hosted in Windows environment by using Active Directory Role",
 "tags": ["windows"],
 "is_public": true,
 "id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
 "categories": ["test1"],
 "name": "Active Directory",
 "author": "Mirantis, Inc",
 "created": "2014-04-03T13:00:13",
 "enabled": true,
 "class_definition": [
 "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "com.mirantis.murano.windows.activeDirectory.SecondaryController",
 "com.mirantis.murano.windows.activeDirectory.Controller",
 "com.mirantis.murano.windows.activeDirectory.PrimaryController"
],
 "fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "type": "Application",
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
}

Response 403

	In attempt to get a non-public package by a user whose project is not an owner of this package.

Response 404

	In case the specified package id doesn’t exist.

Update a package

/v1/catalog/packages/{id} [PATCH]

Allows to edit mutable fields (categories, tags, name, description, is_public, enabled).
See the full specification here [http://tools.ietf.org/html/rfc6902].

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Content type

application/murano-packages-json-patch

Allowed operations:

[
 { "op": "add", "path": "/tags", "value": ["foo", "bar"] },
 { "op": "add", "path": "/categories", "value": ["foo", "bar"] },
 { "op": "remove", "path": "/tags", ["foo"] },
 { "op": "remove", "path": "/categories", ["foo"] },
 { "op": "replace", "path": "/tags", "value": [] },
 { "op": "replace", "path": "/categories", "value": ["bar"] },
 { "op": "replace", "path": "/is_public", "value": true },
 { "op": "replace", "path": "/enabled", "value": true },
 { "op": "replace", "path": "/description", "value":"New description" },
 { "op": "replace", "path": "/name", "value": "New name" }
]

Request 200 (application/murano-packages-json-patch)

[
 { "op": "add", "path": "/tags", "value": ["windows", "directory"] },
 { "op": "add", "path": "/categories", "value": ["Directory"] }
]

Response 200 (application/json)

{
 "updated": "2014-04-03T13:00:13",
 "description": "A domain service hosted in Windows environment by using Active Directory Role",
 "tags": ["windows", "directory"],
 "is_public": true,
 "id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
 "categories": ["test1"],
 "name": "Active Directory",
 "author": "Mirantis, Inc",
 "created": "2014-04-03T13:00:13",
 "enabled": true,
 "class_definition": [
 "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "com.mirantis.murano.windows.activeDirectory.SecondaryController",
 "com.mirantis.murano.windows.activeDirectory.Controller",
 "com.mirantis.murano.windows.activeDirectory.PrimaryController"
],
 "fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "type": "Application",
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
}

Response 403

	An attempt to update immutable fields

	An attempt to perform operation that is not allowed on the specified path

	An attempt to update non-public package by user whose project is not an owner of this package

Response 404

	An attempt to update package that doesn’t exist

Delete application definition from the catalog

/v1/catalog/packages/{id} [DELETE]

Parameters

	id (required) Hexadecimal id (or fully qualified name) of the package to delete

Response 404

	An attempt to delete package that doesn’t exist

Get application package

/v1/catalog/packages/{id}/download [GET]

Get application definition package

Parameters

	id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing package content

Response 404

Specified package id doesn’t exist

Get UI definition

/v1/catalog/packages/{id}/ui [GET]

Retrieve UI definition for a application which described in a package with provided id

Parameters

	id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing UI definition

Response 404

Specified package id doesn’t exist

Response 403

Specified package is not public and not owned by user project, performing the request

Response 404

	Specified package id doesn’t exist

Get logo

Retrieve application logo which described in a package with provided id

/v1/catalog/packages/{id}/logo [GET]

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing application logo

Response 403

Specified package is not public and not owned by user project,
performing the request

Response 404

Specified package is not public and not owned by user project,
performing the request

Categories

Provides category management. Categories are used in the Application Catalog
to group application for easy browsing and search.

List categories

	/v1/catalog/packages/categories [GET]

!DEPRECATED (Plan to remove in L release) Retrieve list of all available application categories

Response 200 (application/json)

A list, containing category names

	Content-Type

	application/json

{
 "categories": ["Web service", "Directory", "Database", "Storage"]
}

	/v1/catalog/categories [GET]

	Method
	URI
	Description

	GET
	/catalog/categories
	Get list of existing categories

Retrieve list of all available application categories

Response 200 (application/json)

A list, containing detailed information about each category

	Content-Type

	application/json

{"categories": [
 {
 "id": "0420045dce7445fabae7e5e61fff9e2f",
 "updated": "2014-12-26T13:57:04",
 "name": "Web",
 "created": "2014-12-26T13:57:04",
 "package_count": 1
 },
 {
 "id": "3dd486b1e26f40ac8f35416b63f52042",
 "updated": "2014-12-26T13:57:04",
 "name": "Databases",
 "created": "2014-12-26T13:57:04",
 "package_count": 0
 }]
}

Get category details

/catalog/categories/<category_id> [GET]

Return detailed information for a provided category

Request

	Method
	URI
	Description

	GET
	/catalog/categories/<category_id>
	Get category detail

Parameters

	category_id - required, category ID, required

Response

	Content-Type

	application/json

{
 "id": "b308f7fa8a2f4a5eb419970c827f4466",
 "updated": "2015-01-28T17:00:19",
 "packages": [
 {
 "fully_qualified_name": "io.murano.apps.ZabbixServer",
 "id": "4dfb566e69e6445fbd4aea5099fe95e9",
 "name": "Zabbix Server"
 }
],
 "name": "Web",
 "created": "2015-01-28T17:00:19",
 "package_count": 1
}

	Code
	Description

	200
	OK. Category deleted successfully

	401
	User is not authorized to access this session

	404
	Not found. Specified category doesn`t exist

Add new category

/catalog/categories [POST]

Add new category to the Application Catalog

Parameters

	Attribute
	Type
	Description

	name
	string
	Environment name; only alphanumeric
characters and ‘-‘

Request

	Method
	URI
	Description

	POST
	/catalog/categories
	Create new category

	Content-Type

	application/json

	Example

	{“name”: “category_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "category_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "package_count": 0
}

	Code
	Description

	200
	OK. Category created successfully

	401
	User is not authorized to access this session

	409
	Conflict. Category with specified name already exist

Delete category

/catalog/categories [DELETE]

Request

	Method
	URI
	Description

	DELETE
	/catalog/categories/<category_id>
	Delete category with
specified ID

Parameters:

	category_id - required, category ID, required

Response

	Code
	Description

	200
	OK. Category deleted successfully

	401
	User is not authorized to access this session

	404
	Not found. Specified category doesn`t exist

	403
	Forbidden. Category with specified name is assigned to
the package, presented in the catalog

Environment template API

Manage environment template definitions in murano. It is possible to create, update, delete, and deploy into OpenStack by translating
it into an environment. In addition, applications can be added to or deleted from the environment template.

Environment Template Properties

	Attribute
	Type
	Description

	id
	string
	Unique ID

	name
	string
	User-friendly name

	created
	datetime
	Creation date and time in ISO format

	updated
	datetime
	Modification date and time in ISO format

	tenant_id
	string
	OpenStack project

	version
	int
	Current version

	networking
	string
	Network settings

	description
	string
	The environment template specification

Common response codes

	Code
	Description

	200
	Operation completed successfully

	401
	User is not authorized to perform the operation

Methods for Environment Template API

List Environments Templates

Request

	Method
	URI
	Description

	GET
	/templates
	Get a list of existing
environment templates

Parameters:

	is_public - boolean, indicates whether public environment templates are listed or not.
True public environments templates from all projects are listed.
False private environments templates from current project are listed
empty all project templates plus public templates from all projects are listed

Response

This call returns a list of environment templates. Only the basic properties are
returned.

{
 "templates": [
 {
 "updated": "2014-05-14T13:02:54",
 "networking": {},
 "name": "test1",
 "created": "2014-05-14T13:02:46",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "is_public": false,
 "id": "2fa5ab704749444bbeafe7991b412c33"
 },
 {
 "updated": "2014-05-14T13:02:55",
 "networking": {},
 "name": "test2",
 "created": "2014-05-14T13:02:51",
 "tenant_id": "123452452345346345634563456345346",
 "version": 0,
 "is_public": true,
 "id": "744e44812da84e858946f5d817de4f72"
 }
]
}

Create environment template

	Attribute
	Type
	Description

	name
	string
and ‘-‘
	Environment template name; only alphanumeric characters

Request

	Method
	URI
	Description

	POST
	/templates
	Create a new environment template

	Content-Type

	application/json

	Example

	{“name”: “env_temp_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_temp_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
}

	Code
	Description

	200
	Operation completed successfully

	401
	User is not authorized to perform the operation

	409
	The environment template already exists

Get environment templates details

Request

Return information about environment template itself and about applications, including to this
environment template.

	Method
	URI
	Description

	GET
	/templates/{env-temp-id}
	Obtains the environment template information

	env-temp-id - environment template ID, required

Response

	Content-Type

	application/json

 {
 "updated": "2015-01-26T09:12:51",
 "networking":
 {
 },
 "name": "template_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "id": "aa9033ca7ce245fca10e38e1c8c4bbf7",
}

	Code
	Description

	200
	OK. Environment Template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

Delete environment template

Request

	Method
	URI
	Description

	DELETE
	/templates/<env-temp-id>
	Delete the template id

Parameters:

	env-temp_id - environment template ID, required

Response

	Code
	Description

	200
	OK. Environment Template deleted successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

Adding application to environment template

Request

	Method
	URI
	Description

	POST
	/templates/{env-temp-id}/services
	Create a new application

Parameters:

	env-temp-id - The environment-template id, required

	payload - the service description

	Content-Type

	application/json

Example

{
 "instance": {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "port": "8080",
 "?": {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
}

Response

{
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
}

	Code
	Description

	200
	OK. Application added successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

Delete application from an environment template

Request

	Method
	URI
	Description

	DELETE
	/templates/{env-temp-id}/services/{app-id}
	Delete application with Specified id

Parameters:

	env-temp-id - The environment template ID, required

	app-id - The application ID, required

	Content-Type

	application/json

Response

{
 "updated": "2015-01-26T09:12:51",
 "services": [],
 "name": "template_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "id": "aa9033ca7ce245fca10e38e1c8c4bbf7",
}

	Code
	Description

	200
	OK. Application deleted successfully

	401
	User is not authorized to access this session

	404
	The application does not exist

Get applications information from an environment template

Request

	Method
	URI
	Description

	GET
	/templates/{env-temp-id}/services
	It obtains the service description

Parameters:

	env-temp-id - The environment template ID, required

	Content-Type

	application/json

Response

[
 {
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "tomcat",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
 },
 {
 "instance": "ef984a74-29a4-45c0-b1dc-2ab9f075732e",
 "password": "XXX",
 "name": "mysql",
 "?":
 {
 "type": "io.murano.apps.database.MySQL",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
 }
]

	Code
	Description

	200
	OK. Application information received successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

Update applications information from an environment template

Request

	Method
	URI
	Description

	PUT
	/templates/{env-temp-id}/services/{service-id}
	It updates the service description

Parameters:

	env-temp-id - The environment template ID, required

	service-id - The service ID to be updated

	payload - the service description

	Content-Type

	application/json

Example

{
 "instance": {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "port": "8080",
 "?": {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
}

Response

{
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
}

	Code
	Description

	200
	OK. Environment Template updated successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

Create an environment from an environment template

Request

	Method
	URI
	Description

	POST
	/templates/{env-temp-id}/create-environment
	Create an environment

Parameters:

	env-temp-id - The environment template ID, required

Payload:

	‘environment name’: The environment name to be created.

	Content-Type

	application/json

Example

{
 "name": "environment_name"
}

Response

{
 "environment_id": "aa90fadfafca10e38e1c8c4bbf7",
 "name": "environment_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "session_id": "adf4dadfaa9033ca7ce245fca10e38e1c8c4bbf7",
}

	Code
	Description

	200
	OK. Environment created from template successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

	409
	The environment already exists

POST /templates/{env-temp-id}/clone

Request

	Method
	URI
	Description

	POST
	/templates/{env-temp-id}/clone
	It clones a public template from one project
to another

Parameters:

	env-temp-id - environment template ID, required

Example Payload

{
 'name': 'cloned_env_template_name'
}

	Content-Type

	application/json

Response

{
 "updated": "2015-01-26T09:12:51",
 "name": "cloned_env_template_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "is_public": False,
 "id": "aa9033ca7ce245fca10e38e1c8c4bbf7",
}

	Code
	Description

	200
	OK. Environment Template cloned successfully

	401
	User is not authorized to access this session

	403
	User has no access to these resources

	404
	The environment template does not exist

	409
	Conflict. The environment template name already exists

Index

 M

M

 	
 	Murano Administrator Guide

 	
 	Murano Contributor Guide

Telnet Example

Namespaces:
 =: io.murano.apps.linux
 std: io.murano
 res: io.murano.resources

Name: Telnet

Inheritance from io.murano.Application class
(located at Murano Core library) indicates,
that this is a complete application
and that 'deploy' method has to be defined.
Extends: std:Application

Properties:
 name:
 Contract: $.string().notNull()

 instance:
 Contract: $.class(res:Instance).notNull()

Methods:
 deploy:
 Body:
 # Determine the environment to which the application belongs.
 # This message will be stored in deployment logs and available in UI
 - $this.find(std:Environment).reporter.report($this, 'Creating VM for Telnet Instance.')
 # Deploy VM
 - $.instance.deploy()
 - $this.find(std:Environment).reporter.report($this, 'Instance is created. Setup Telnet service.')
 # Create instance of murano resource class. Agent will use it to find
 # corresponding execution plan by the file name
 - $resources: new('io.murano.system.Resources')
 # Deploy Telnet
 - $template: $resources.yaml('DeployTelnet.template')
 # Send prepared execution plan to Murano agent
 - $.instance.agent.call($template, $resources)
 - $this.find(std:Environment).reporter.report($this, 'Telnet service setup is done.')

UI Definition of telnet application

Version: 2

Templates:
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: generateHostname($.appConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage
 keyname: $.instanceConfiguration.keyPair
 assignFloatingIp: $.appConfiguration.assignFloatingIP

Application:
 ?:
 type: io.murano.apps.linux.Telnet
 name: $.appConfiguration.name
 instance: $instance

Forms:
 - appConfiguration:
 fields:
 - name: title
 type: string
 required: false
 hidden: true
 description: Telnet is a service that allows a Telnet client to connect across a network and access a command session
 - name: name
 type: string
 label: Application Name
 description: >-
 Enter a desired name for the application. Just A-Z, a-z, 0-9, dash and
 underline are allowed.
 minLength: 2
 maxLength: 64
 regexpValidator: '^[-\w]+$'
 errorMessages:
 invalid: Just letters, numbers, underscores and hyphens are allowed.
 helpText: Just letters, numbers, underscores and hyphens are allowed.
 - name: dcInstances
 type: integer
 hidden: true
 initial: 1
 - name: assignFloatingIP
 type: boolean
 label: Assign Floating IP
 description: >-
 Select to true to assign floating IP automatically
 initial: false
 required: false
 widgetMedia:
 css: {all: ['muranodashboard/css/checkbox.css']}
 - name: unitNamingPattern
 type: string
 label: Hostname
 description: >-
 For your convenience instance hostname can be specified.
 Enter a name or leave blank for random name generation.
 required: false
 regexpValidator: '^(([a-zA-Z0-9#][a-zA-Z0-9-#]*[a-zA-Z0-9#])\.)*([A-Za-z0-9#]|[A-Za-z0-9#][A-Za-z0-9-#]*[A-Za-z0-9#])$'
 helpText: Optional field for a machine hostname
 # temporaryHack
 widgetMedia:
 js: ['muranodashboard/js/support_placeholder.js']
 css: {all: ['muranodashboard/css/support_placeholder.css']}
 validators:
 # if unitNamingPattern is given and dcInstances > 1, then '#' should occur in unitNamingPattern
 - expr: $.appConfiguration.dcInstances < 2 or not $.appConfiguration.unitNamingPattern.bool() or '#' in $.appConfiguration.unitNamingPattern
 message: Incrementation symbol "#" is required in the Hostname template
 - instanceConfiguration:
 fields:
 - name: title
 type: string
 required: false
 hidden: true
 description: Specify some instance parameters on which the application would be created
 - name: flavor
 type: flavor
 label: Instance flavor
 description: >-
 Select registered in OpenStack flavor. Consider that application performance
 depends on this parameter.
 required: false
 - name: osImage
 type: image
 imageType: linux
 label: Instance image
 description: >-
 Select valid image for the application. Image should have Murano agent installed and
 registered in Glance.
 - name: keyPair
 type: keypair
 label: Key Pair
 description: >-
 Select the Key Pair to control access to instances. You can login to
 instances using this KeyPair after application deployment
 required: false
 - name: availabilityZone
 type: azone
 label: Availability zone
 description: Select availability zone where the application would be installed.
 required: false

UI Definition Of Active Directory Application

Version: 2

Templates:
 primaryController:
 ?:
 type: io.murano.windows.activeDirectory.PrimaryController
 host:
 ?:
 type: io.murano.windows.Host
 adminPassword: $.appConfiguration.adminPassword
 name: generateHostname($.appConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage
 assignFloatingIp: $.appConfiguration.assignFloatingIP

 secondaryController:
 ?:
 type: io.murano.windows.activeDirectory.SecondaryController
 host:
 ?:
 type: io.murano.services.windows.Host
 adminPassword: $.appConfiguration.adminPassword
 name: generateHostname($.appConfiguration.unitNamingPattern, $index + 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage

Application:
 ?:
 type: io.murano.windows.activeDirectory.ActiveDirectory
 name: $.appConfiguration.name
 primaryController: $primaryController
 secondaryControllers: repeat($secondaryController, $.appConfiguration.dcInstances - 1)

Forms:
 - appConfiguration:
 fields:
 - name: configuration
 type: string
 hidden: true
 initial: standalone
 - name: name
 type: string
 label: Domain Name
 description: >-
 Enter a desired name for a new domain. This name should fit to
 DNS Domain Name requirements: it should contain
 only A-Z, a-z, 0-9, (.) and (-) and should not end with a dash.
 DNS server will be automatically set up on each of the Domain
 Controller instances. Note: Only first 15 characters or characters
 before first period is used as NetBIOS name.
 minLength: 2
 maxLength: 255
 validators:
 - expr:
 regexpValidator: '^([0-9A-Za-z]|[0-9A-Za-z][0-9A-Za-z-]*[0-9A-Za-z])\.[0-9A-Za-z][0-9A-Za-z-]*[0-9A-Za-z]$'
 message: >-
 Only letters, numbers and dashes in the middle are
 allowed. Period characters are allowed only when they
 are used to delimit the components of domain style
 names. Single-level domain is not
 appropriate. Subdomains are not allowed.
 - expr:
 regexpValidator: '(^[^.]+$|^[^.]{1,15}\..*$)'
 message: >-
 NetBIOS name cannot be shorter than 1 symbol and
 longer than 15 symbols.
 - expr:
 regexpValidator: '(^[^.]+$|^[^.]*\.[^.]{2,63}.*$)'
 message: >-
 DNS host name cannot be shorter than 2 symbols and
 longer than 63 symbols.
 helpText: >-
 Just letters, numbers and dashes are allowed.
 A dot can be used to create subdomains
 - name: dcInstances
 type: integer
 label: Instance Count
 description: >-
 You can create several Active Directory instances by setting
 instance number larger than one. One primary Domain Controller
 and a few secondary DCs will be created.
 minValue: 1
 maxValue: 100
 initial: 1
 helpText: Enter an integer value between 1 and 100
 - name: adminAccountName
 type: string
 label: Account Name
 initial: Administrator
 regexpValidator: '^[-\w]+$'
 errorMessages:
 invalid: 'Just letters, numbers, underscores and hyphens are allowed.'
 - name: adminPassword
 type: password
 label: Administrator password
 descriptionTitle: Passwords
 description: >-
 Windows requires strong password for service administration.
 Your password should have at least one letter in each
 register, a number and a special character. Password length should be
 a minimum of 7 characters.

 Once you forget your password you won't be able to
 operate the service until recovery password would be entered. So it's
 better for Recovery and Administrator password to be different.
 - name: recoveryPassword
 type: password
 label: Recovery password
 - name: assignFloatingIP
 required: false
 type: boolean
 label: Assign Floating IP
 description: >-
 Select to true to assign floating IP automatically to Primary DC
 initial: false
 required: false
 widgetMedia:
 css: {all: ['muranodashboard/css/checkbox.css']}
 - name: unitNamingPattern
 type: string
 label: Hostname template
 description: >-
 For your convenience all instance hostnames can be named
 in the same way. Enter a name and use # character for incrementation.
 For example, host# turns into host1, host2, etc. Please follow Windows
 hostname restrictions.
 required: false
 regexpValidator: '^(([a-zA-Z0-9#][a-zA-Z0-9-#]*[a-zA-Z0-9#])\.)*([A-Za-z0-9#]|[A-Za-z0-9#][A-Za-z0-9-#]*[A-Za-z0-9#])$'
 # FIXME: does not work for # turning into 2-digit numbers
 maxLength: 15
 helpText: Optional field for a machine hostname template
 # temporaryHack
 widgetMedia:
 js: ['muranodashboard/js/support_placeholder.js']
 css: {all: ['muranodashboard/css/support_placeholder.css']}
 validators:
 # if unitNamingPattern is given and dcInstances > 1, then '#' should occur in unitNamingPattern
 - expr: $.appConfiguration.dcInstances < 2 or not $.appConfiguration.unitNamingPattern.bool() or '#' in $.appConfiguration.unitNamingPattern
 message: Incrementation symbol "#" is required in the Hostname template
 - instanceConfiguration:
 fields:
 - name: title
 type: string
 required: false
 hidden: true
 descriptionTitle: Instance Configuration
 description: Specify some instance parameters on which service would be created.
 - name: flavor
 type: flavor
 label: Instance flavor
 description: >-
 Select registered in OpenStack flavor. Consider that service performance
 depends on this parameter.
 required: false
 - name: osImage
 type: image
 imageType: windows
 label: Instance image
 description: >-
 Select valid image for a service. Image should already be prepared and
 registered in glance.
 - name: availabilityZone
 type: azone
 label: Availability zone
 description: Select availability zone where service would be installed.
 required: false

My first Murano App getting started guide

This directory contains the “My first Murano App getting started guide”
tutorial.

The tutorials work with an application that can be found in the
openstack/murano-apps [http://git.openstack.org/cgit/openstack/murano-apps/tree/Plone/package]
repository.

Prerequisites

To build the documentation, you must install the Graphviz package.

/source

The /source directory contains the tutorial documentation as
reStructuredText [http://docutils.sourceforge.net/rst.html] (RST).

To build the documentation, you must install Sphinx [http://sphinx-doc.org/] and the
OpenStack docs.openstack.org Sphinx theme (openstackdocstheme) [https://pypi.python.org/pypi/openstackdocstheme/]. When
you invoke tox, these dependencies are automatically pulled in from the
top-level test-requirements.txt.

You must also install Graphviz [http://www.graphviz.org/] on your build system.

The following command invokes sphinx-build with murano-firstapp:

tox -e murano-firstapp

/samples

The code samples in this guide are located in this directory.

/build/murano-firstapp

The HTML documentation is built in this directory. The .gitignore file
for the project specifies this directory.

Who is this guide for

Publish your Murano app in the application catalog

Join the OpenStack community

Prepare testing environment

Contribute your code to Murano-apps

Contribute your code to App-catalog

Develop Murano app for Plone

Develop standalone Plone Murano app (single VM)

Plone server requirements

Define host VM requirements

Host VM operatting system requirements

Host VM hardware resources requirements

Define preinstalled software and libraries requirements

Define what the PloneServerApp should do

Create and debug sh-script that fully deploys the Plone server on a single VM

Create Murano package for your app

Upload and deploy your Murano app to OpenStack cloud

Develop cluster Plone Murano app (multi VM)

Develop basic server-client Murano app

Add load-balancing to the Plone cluster

Add scalability to the Plone cluster

Add self-healing to the Plone cluster

What is the use case

What you will learn

My first Murano App getting started guide

Contents

	Who is this guide for

	What is the use case

	What you will learn

	Before the start
	What you need

	Deploy Murano

	Develop Murano app for Plone
	Develop standalone Plone Murano app (single VM)
	Plone server requirements

	Define what the PloneServerApp should do

	Create and debug sh-script that fully deploys the Plone server on a single VM

	Create Murano package for your app

	Upload and deploy your Murano app to OpenStack cloud

	Develop cluster Plone Murano app (multi VM)
	Develop basic server-client Murano app

	Add load-balancing to the Plone cluster

	Add scalability to the Plone cluster

	Add self-healing to the Plone cluster

	Debugging and troubleshooting your Murano app

	Publish your Murano app in the application catalog
	Join the OpenStack community

	Prepare testing environment

	Contribute your code to Murano-apps

	Contribute your code to App-catalog

Debugging and troubleshooting your Murano app

Before the start

What you need

Deploy Murano

 _images/deploy_env_2.png
88 openstack

Project o
Admin

Identity o

Applications &

Catalog a

Environments

Browse

Manage o

Developer o

£ demobox - RegionOne ~

Applications / Catalog / Environments

Environments

Environment-2
Env-1
quick-env-1
Environment-3

Displaying 4 items.

Status

Ready to deploy

Ready to configure

Ready to deploy

Ready to deploy

& demobox v RegionOne v

e B~ |

Manage Components | ~

Manage Components | ~

_images/network-topology-2.png
8 openstack = aamin ~

_ Project / Network / Network Topology

COMPUTE >
wwore~ Network Topology
Network Topology
Neworks
Toplogy | Grapn
Rouers

sESmal | 32 Nomal

ORCHESTRATION >

CATALOG >
Admin >
Idenity >
Appiications >
Developer >

@ LZZEBITITZLT YOIBAPTO0E

¥2I0089TZ6T

_images/hello-world-desc.png
Hello
World!

Hello, World

A package which demonstrates
application development for
Murano by greeting the user.

Details »

O AddtoEnv | «f Quick Deploy

_images/qs_package_details.png
Import Package

Name Description:
\ apache HTTP Sever \ Name: Set up for Igentifying a package.
Tags: Used for identfying and ftering packages.
Tags@
Public: Defines whether or ot a package can be used
HTTP, Server, WebServer, HTMIL, Apache by othe tenants. (Applies to package dspendencies)
Active: Allows to fide & package from the catalog.
O Pulic (Applies to package dependencies)
@ Active Description: Allows adding acdtional inomation
avout a package.
Description

The Apache HTTP Server Project is an effort to
develop and maintain an

open-source HTTP server for modem operating
systems including UNIX and

Windows NT. The goal of this project is to
provide a secure, efficient and

extensible server that provides HTTP services
in sync with the current HTTP.

standards.

Apache hitpd has been the most popular web
server on the Infemet since

_images/import_bundle.png
88 openstack

Project
Admin
Identity
Applications

Catalog

Manage

Developer

Images

Packages

Categories

£ demobox - RegionOne ~
Applications / Manage / Packages

Packages

KeyWord+

Package Name Tenant Name

& demobox v RegionOne v

Fiter || 4 Import Package

Active Public Type Version Created

No items to display.

Updated Actions

_images/configure_app.png
Configure Application: Apache Tomcat

Application Name *

Tomeat

@ Assign Floating IP

Apache Tomcat
Apache Licenss, Version 2.0

Application Name: Enter a desired name for the
‘application. Just A-Z, a2, 0-9, dash and underline are
allowed

Assign Floating IP: Select to true to assign floating
1P automatically

_images/select_packages.png
B3 openstack = demobox - RegionOne ~ & demobox ~ RegionOne ~

Project v Applications / Manage / Packages

Admin

Packages

Identity v
KeyWord = Fiter || +ImportPackage || +Import Bundie More Actions +
Applications -
O Package Name TenantName Active Public Type Version Created Updated Actions
Catalog v
O ApacheHTTPSever demobox ~ Tue Faise Appication - May 23,2016, 3557 pm. May 23, 2016, 357 pm. | Modity Package | ~
Manage o
® Cher server demobox Tue False Appicaton - May 23,2016, 3:25 pm. May 23,2016, 325 pm. | Modity Package |~
Images
O Corelibrary demobox Tue Fase Lbay - May 23,2016, 3:24 pm. May 23,2016, 324 pm. | Modity Package |~
Packages
O Dockerinterface Libiary demobox T False Lbrary - May 23,2016, 3:28 pm. May 23,2016, 328 pm. | Modiy Package |~
Categories
® Docker MariaDB demobox Tue False Appicaton - May 23,2016, 4:04 pm. May 23, 2016, 404 pm. | Modity Package | ~
Developer v
O Docker Nginx demobox Tue False Appicaton - May 23,2016, 358 pm. May 23,2016, 358 pm. | Modiy Package |~
O Docker Standalone Host demobox ~ Tue False Appication - May 23,2016, 358 pm. May 23,2016, 358 pm. | Modity Package | ~
O Kuberetes Cluster demobox Tue False Appicaton - May 23,2016, 358 pm. May 23,2016, 358 pm. | Modiy Package |~
O Kubemetes Pod demobox Tue False Appicaton - May 23,2016, 358 pm. May 23,2016, 358 pm. | Modity Package | ~
O Mongons demobox Tue False Appicaton - May 23,2016, 401 pm. May 23, 2016, 401 pm. | Modiy Package | ~
0 mysQU demobox Tue False Appicaton - May 23,2016, 358 pm. May 23,2016, 358 pm. | Modity Package | ~
O SQLLibary demobox Tue Fase Lbay - May 23,2016, 358 pm. May 23,2016, 358 pm. | Modiy Package |~

Displaying 12 items

_images/bundle_name.png
Import Bundle

Description:
Bundie Name: Bundi's ful name.

The bunde is going to be installed from
hitp:/storage. apps.openstack.org/ repository.

Note: Youl have to configure each package installed from
this bundle separately.

If packages depend upon other packages andlor require
specific glance images, those are going to be installed with

them from murano repository.

_images/qs_app_category.png
Import Package

Application Category Description:
Apploation Severs -] categories Setect one or more categories for a
Key-Value Storage 3 package
sap
ot Services Speaitying a category helps to fiter applcations inthe
=l catalog

- -]

_images/add_pkg_info.png
Import Package

Name Description:
wysaL Name is a human readable name of a packags.
Categories are a precefined set of valuss used to fter the
Application Category packages.
Weo
e e Tags are an arbitary commarseparated values also used
prisi o fiter the packages.
Databases

Public Defines whether or not a package is avalable for
use by other tenants. (Applies to package dependencies)

Kev-Value Storage

Tags @ Active Allows the status of a package o be changed.
to package dependenci
Database, MySal, SQL, RDEMS (Apples to pac)
Description consists of several sentences abou the
0 Public package's purpose.
@ Active
Description

MySql is a relational database management system
(RDBMS), and ships with

o GUI tools to administer MySQL databases or
‘manage data contained within

the databases.

= -]

_images/env-component-logs.png
28 openstack £ demobox - RegionOne + & demobox ~ RegionOne ~

— | homicatons / Cataiog/ Envionments 1 emo 1 Appicatons / ApachetpSener
Aamin
ApacheHttpServer
Igenty .
P — Coment | Lo
Catalog .

Component Logs

2016-05-25 13:31:11 - Creating VM for Apache Server.
2016-05-25 13:31:41 - Instance is created. Deploying Apache.
2016-05-25 13:34:40 - Apache is installed.

2016-05-25 13:34:40 - Apache is available at http://10.0.4.3

Environments

Browse

Manage v

Developer <

_images/chef_server.png
Project

Admin

Identity

Applications

Catalog

Manage

Environments

Browse

Applications / Catalog / Browse

Browse
Recent Activity
Chef Server
& .,

pen Source CHEF
CHEE server ona VM

Details »

©Create Env | o Quick Deploy

_images/new-env-2.png
Components Topology Deployment History

Application Components App category | All~

< >

‘com yourdomain HelloWorid

® Drop Components here

+ Add Component |~ B> Deploy This Environment

Displaying 1 item

Name Type Status Last operation Time updated Actions
HelloWorld com.yourdomain HelloWorld Ready to deploy Component draft created -

Displaying 1 item

_images/architecture.png
keystone

|
murano-agent |

murano-client CLI

horizon
dashboard
RabbitMQ

RESTAPI OPTIONAL DATA FLOW

AMQP MANDATORY DATA FLOW

_images/drag_and_drop.png
88 openstack £ demobox - RegionOne + & demobox > RegionOne ~

Project 5 Applications / Catalog / Environments / Environment-3
Admin .

Environment-3
Identity 5
Bpricstons - Components. Deployment History
Catalog N

Application Components App category | Al~

Environments. Q
e - o P e

< CHEF e e docker >
Manage o ‘Apache HTTP Chef Server Docker MariaDB Docker Nginx Docker Standal. Kubemetes Clu.
Developer 5

@© Drop Components here
+ Add Component
Name Type status Last operation Time updated Actions

No components

_images/qs_package_import.png
28 openstack 2 demobox - RegionOne ~

Project | Apptcations / Manage / Paciages
Aamin .
Packages
Igenty .
T .
Tonant
O packagename T
Catalog . ame
-
Manage - erver
O ApacheToncar demobox
images
Packages O Chef Server. ‘demobox
Categres
O coclomy demobox
Developer .
Dok rtace

Library

True

True

True

True

True

Public

False

False

False

False

False

Type

Appiication

Appiication

Appiication

Library

Library

Version Created
May 25, 2016,
1:28 pm.

May 25, 2016,
1:29 pm.

May 23, 2016,
325pm.

May 23, 2016,
324pm.

May 25, 2016,
216pm.

& demobox v RegionOne ~.

Updated

May 25, 2016,
1:28 pm.

May 25, 2016,
1:29 pm.

May 23, 2016,
325pm.

May 23, 2016,
324pm.

May 25, 2016,
216pm.

+import Bundle | [USEESEEEH | More Actions ~

Actions

Modity Package | +

Modity Package | +

Modity Package | +

Modity Package | +

Modity Package | +

_images/repository.png
Import Package

Package Source
Repository

Package Name * @

Package version
Optional

Description:
Package Name: Fully qualfied package name.
Package Version: Version of the package (optona).

The package s going to be imported from
hitp:/storage. apps.openstack.org/ repository.

Note: If the package depends upon other packages and/or
requires specific glance images, those are going to be
installed with it from murano repository.

_images/murano_actions.png
28 openstack

Project
Admin
Identity
Applications

Catalog

Manage

Developer

Environments

Browse

£ tiashchova - RegionOne +-

Poptcatons 1 Caaog | Envionments | qickenv-t
quick-env-4

Components | Topology ~ Deployment History Latest Deployment Log

Application Components App category | All~

= & 1
< foechs docker MysQL.
‘Apache HTTP Ser. Docker Standalone. Kubemetes Cluster MysQL
@ Drop Components here
Name Type Staws Last operation
KubemetesCluster Kuberetes Cluster Ready Kubernetes cluster is up and running

Displaying 1 item

& tlashchova v RegionOne v

Q
@ N
Wordpress Zabtix Agent
+ Add Component
Time updated

May 26, 2016, 1:02 p.m.

_images/plone-logo.png
Plone:

_images/plone-simple-step2.png
© Configure Application: Plone CMS

Installation Path * © Installation Path:
‘ /opt/plone ’ Enter the path on the VM filesystem to deploy Plone
into
Admin password * © Admin password:
@ Default administrator's password

. Listening Port:
Confirm password ~ @

Port to listen at

Listening Port *

8080

<>

_images/quick_deploy.png
28 openstack

Project -
Admin

Identity -

Applications &

Catalog a

Environments

Browse

Manage -

Developer 5

5 demobox @ RegionOne ~

Applications / Catalog / Browse

Browse

Recent Activity
Apache Tomcat
K ATt -
‘©open source software Apache
implementaton of the

Java Serviet and

Details » Details »
©AWIOEN | Quick Depioy ©AWIOEN | Quick Deploy
App Category: = A~ Environment: = Environment-3
Apache HTTP S.. Apache Tomcat
M e Apache HTTP K Apache Tomcatis an
Apache server Projectis an open source sofware
effort to develop and implementation of the

‘maintain an open-

Details »

©AddtoEnv | o Quick Deploy ©add

Apache HTTP S..

‘The Apache HTTP
‘Server Project is an
effort to develop and
‘maintain an open-

Java Serviet and

Details »

toEnv

& demobox v RegionOne v

Chef Server
& s
el
CHEF 'CHEF server on a VM

Details »

©AddtoEnv | o Quick Deploy

Chef Server
& s
el
CHEF 'CHEF server on a VM

Details »

©AddtoEnv | o Quick Deploy

_images/qs_quick_deploy_2.png
= Configure Application: Apache HTTP Server

Instance flavor

oo 9

Instance image *

s]]

Key Pair

No keypair

Availability zone

s 9

Instance Naming Pattern @

Apache HTTP Server

‘Specify some instance parameters on which the
‘application would be created

Instance flavor: Select registered In Openstack flavor.
‘Consider that application performance depends on this
parameter.

© Instance image: Select valid image for the
‘application. Image should already be prepared and
registered In glance.

Key Palr: Select the Key Palr to control access to
Instances. You can login to Instances using this
KeyPair after the deployment of application.

Avallability zone: Select availability zone where
‘application would be installed.

Instance Naming Pattern: Specify a string, that will
be used in instance hostname. Just A-Z, a2, 0-9, dash
and underiine are allowed.

Back [EET

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_images/delete_application.png
28 openstack

Project
Admin
Identity
Applications

Catalog

Manage

Developer

Environments

Browse

£ demobox - RegionOne +

Applications / Catalog / Environments / Env-1

Env-1

Components | Topology

Deployment History

Application Components

-
< Apache
Apache HTTP S,
Name Type
Tomcat Apache Tomcat

Displaying 1 item

&

‘Apache Tomeat

Status

Ready to deploy

App category | All~
c =4
s [o |

Ghef Server Docker MariaDBs

@ Drop Components here

Last operation

Component draft created

& demobox +

RegionOne +

a
NGwX @i
e e >
DockerNgink Docker Reds
+Add Comporent || Deploy This Environment
Time updated Actions

_images/add-interface.png
Add Interface

Subnet

local: 192.168.0.0/24 (13dea654-6b4a-417c-9f.

1P Address (optional) @
19216802

Router Name *

murano-default-router

Router ID *

021faae3-f79-4a3d-aic0-587890609949

Description:

You can connect a specified subnet to the router.

‘The default IP address of the interface created is a
gateway of the selected subnet. You can specify
another IP address of the interface here. You must
Select a subnet to which the specified IP address
belongs to from the above fist.

_images/app_filter_example.png
88 openstack

Project
Admin
Identity
Applications

Catalog

Manage

Developer

Environments

Browse

5 demobox @ RegionOne ~

Applications / Catalog / Browse

Browse

Recent Activity
Docker MariaDB
MariaDB strives to be
MariaDB

the logical choice for
database professionals.
Iooking for a robust,

Details »

©Create Env | o Quick Deploy

App Category: = A~

MongoDB
MongoDB is a cross-
platform document-
oriented database.
Classified as a NoSQL

Details »

©Create Env | o Quick Deploy

MongoDB
MongoDB s a cross-
platform document-
oriented database.
Classified as a NoSQL

Details »

©Create Env | Quick Depioy

Environment: Create Environment

& demobox » RegionOne ~

Docker Nginx
NGINX nginx (pronounced
“engine-x) is an open
Source reverse proxy
Server for HTTP,

Details »

OCreate Env | o Quick Deploy

_images/new-env-3.png
Project

Identity

Applications / Catalog / Environments / New

New

CATALOG

Environments

MANAGE

Developer

Browse

Components | Topology ~ Deployment History Latest Deployment Log

Application Components

¢

‘com yourdomain HelloWorid

Displaying 1 item

Name. Type Status
HelloWorld - Ready.

Displaying 1 item

App category | Al~

Last operation

Hello, Bob!

® Drop Componen

_static/down-pressed.png

_images/env_default_network.png
88 openstack

Project -
Admin o
Identity o
Applications &
Catalog a
Environments

Browse

Manage o

Developer v

£ demobox - RegionOne ~
Applications / Catalog / Environments

Environments

Environment Name * @

Environment-1

& demobox ~ RegionOne +

Status Actions

Environment Default Network * @

(o]

_static/ajax-loader.gif

_images/qs_package_url.png
Import Package

Description:
Package URL: HTTR/HTTPS URL of the package fe.

Note: I the package depends upon other packages
Package URL * @ andlor requires specific glance images, those are going
to be installed with t from murano repository

Package Source
URL

\ tp//storage. apps.openstack.org/apps/io.murano. \

_images/hello-world-screen-1.png
Displaying 1 item
Name Type Status. Last operation
Demo - Ready Hello, World!

Displaying 1 item

_static/up.png

_images/plone-simple-step1.png
© Configure Application: Plone CMS

Host Name * Host Name:
plone-vm Enter a hostname for a virtual machine to be created

Instance image:

Instance image *
Select valid image for the application. Image should

already be prepared and registered in glance.

<«

Debian 8 x64 (pre-installed murano-agent)

. © Instance flavor:
Instance flavor

Select registered in Openstack flavor. Consider that
application performance depends on this parameter.

<«

m1.medium

Assign Floating IP:
® Assign Floating IP
Check to assign floating IP automatically

Next

_images/qs_quick_env.png
28 openstack £ demobox - RegionOne + & demobox > RegionOne +

Project 5 Applications / Catalog / Environmens / quick-env-4
Admin 5 .
quick-env-4
Identity 5
Bpricstons - Components. Topology Deployment History
Catalog N
Application Components App category | Al~
Environments. Q
— - & G A, i
< CHEF e e >
Manage o Apache HTTP. ‘Apache Tomcat Chef Server Docker MariaDB Docker Redis
Developer 5

® Drop Components here

+ Add Component

Type Status Last operation Time updated Actions

Apache HTTP Server Ready to deploy Component draft created

Displaying 1 item

_images/network-topology-1.png
B openstack = acmin

_ Project / Network / Network Topology

COMPUTE >
wwore~ Network Topology
Network Topology
Neworks
Topoogy | Grapn
Routrs

ORCHESTRATION >

cATALOG >
Admin >
Idenity >
Appiications >
Developer >

@ LZZEBITITZLT YOIBAPTO0E

_images/configure-step1.png
Configure Application: com.yourdomain.HelloWorld

.
Username Username ofthe user to say ello to

_images/app_category.png
28 openstack

Project

Admin

Identity

Applications

Catalog

Manage

Developer

Environments

Browse

5 demobox @ RegionOne ~

Applications / Catalog / Browse

Browse
Recent Activity

MongoDB
MongoDB is a cross-
platform document-
oriented database.
Classified as a NoSQL

Details »

©Create Env o Quick Deploy

Al

Appicatin Servers (1)
Databases (2)
Apache s oo
Key-Value Storage (0)
Load Balancers (0)

30>

o

Message Queue (0)
© Create ey uren wepoy

Docker Nginx
NGINX Nginx (pronounced
“engine-x is an open
X208 source reverse proxy.
Server for HTTP,

Details »

©Create Env o Quick Depioy.

Environment: Create Environment

Chef Server
& oo
T
CHEF CHEF server on a VM

Details »

©Create Env o Quick Depioy.

& demobox » RegionOne ~

Kubernetes Pod
Kubernes Pod - A
collection of containers.
which will be
scheduled onto the

Details »

OCreate Env | o Quick Deploy

Q Fiter

Docker Nginx
NGINX nginx (pronounced
“engine-x) is an open
& dock: source reverse proxy
Server for HTTP,

Details »

OCreate Env | o Quick Deploy

_images/add_key_pair.png
GitChef

gt Configure Applicatiol

Instance flavor

m1.medium v
Instance image *
Select Image v

‘Avallability zone

nova v
Network
Auto v

Instance Naming Pattern @

GitChef

‘Specify some instance parameters on which the
application would be created

Instance flavor: Select registered in Openstack flavor.
Consider that application performance depends on this.
parameter.

Instance image: Select valid image for the appiication.
Image should already be prepared and registered in
glance.

© Key Pair: Select the Key Pair to control access to

instances. You can login to instances using this.
KeyPair after the deployment of application.

Avallability zone: Select availability zone where.
application would be installed.

Network: Select a network to join. ‘Auto’ corresponds.
10 a default environment's network.

Instance Naming Pattern: Specify a string, that will be
used in instance hostname. Just A-Z, a-z, 0-9, dash
and underline are allowed.

_images/environments.png
B3 openstack

Project

Admin

Identity

Applications

Catalog

Manage

Developer

= demobox - RegionOne +

v Applications / Catalog / Environments

Environments

Environment-2

Environments

Browse
quick-env-1

Environment-3

Displaying 4 items.

Status

Ready to deploy

Ready to configure

Ready to deploy

Ready to deploy

& demobox v RegionOne v

+ Create Environment

Actions

Manage Components | ~

Manage Components | ~

Manage Components | ~

Manage Components | ~

_images/add_more_apps.png
Configure Application: Apache Tomcat

Application Name *
Tomeat Apache Tomcat

Application Name:

O Continue application adding Enter a desired name for the application. Just A-Z, a-

0-9, dash and underiine are allowed

Continue application adding:

If checked, you will be retured to the Application
Catalog page. If not - to the Environment page, where
you can deploy the application.

_images/qs_apps.png
28 openstack

Project

Admin

Identity

Applications

Catalog

Manage

Developer

5 demobox @ RegionOne ~

v Applications / Catalog / Browse

Browse

Recent Activity

Apache HTTP Server
The Apache HTTP Server

Apache projectis an effort to
Environments develop and maintain an
open-source HTTP server
Browse Details »
v ©AddtoEnv
App Category: Environment:
Al quickenv2+
Apache HTTP Server
The Apache HTTP Server
Apache projectis an effort to

develop and maintain an
open-source HTTP server

Details »

©AddtoEnv | o Quick Deploy

& demobox v RegionOne v

Q Fiter

Apache Tomcat
Apache Tomcatis an open
Source software
implementation of the Java
Serviet and JavaServer

Details »

©AddtoEnV | o Quick Deploy

_images/new-inst.png
Add Application to “quick-env-3"

Instance flavor

B E

Instance image

Select Image o

Key Pair

No keypair

Availability zone

nova

Git Application

‘Specify some instance parameters on which the
‘application would be created

Instance flavor: Select registered in Openstack flavor.
‘Consider that application performance depends on this.

parameter.
Instance image: Select valid image for the application.

Image should have Murano agent installed and
registered in Glance.

Key Pair: Select the Key Pair to control access to
instances. You can login to instances using this
KeyPalr aiter application deployment

Avallability zone: Select availability zone where the
‘application would be installed.

_images/chef_server_form.png
£ Configure Application: Chef Server

Ssh Key Name *
[‘ Chef Server

© Ssh Key Name:

Chef Flavor Name Name of a Key Pai to enable SSH access to the

instance
Chef Flavor Name:
Chef Port
Name Flavor to use for server
000 Chef Port:
Port Number

Chef Server Name

Chef Server Name:
OpenSourceChefServer

The Instance Name

Chef Image Name * Chef Image Name:

Name of image to use for server
Rabbit Password:

Rabbit Password

Password for RabbitMQ
secrete

_images/add_from_cat.png
28 openstack

Project

Admin

Identity

Applications

Catalog

Manage

Developer

5 demobox @ RegionOne ~
= Applications / Catalog / Browse

Browse

Recent Activity
Apache Tomcat Apache HTTP S..
2 K Apache Tomeatisan M e Apache HTTP
s T Apache Sewer Projectis an
Environments implementation of the effor to develop and
Java Serviet and ‘maintain an open-
Browse Details » Details »
v ©AWIOEN | Quick Depioy ©AWIOEN | Quick Deploy
App Category: = A~ Environment:
Apache HTTP S..
M T Apache HTTP K Apache Tomeatisan
Apache Sener Projectis an open source sofware
effor to develop and implementation of the
‘maintain an open- Java Serviet and
Details » Details »
©AWIOEN | Quick Depioy ©AWIOEN | Quick Deploy

& demobox ~ RegionOne +

Chef Server
& s
el
CHEF 'CHEF server on a VM

Details »

©AddtoEnv | o Quick Deploy

Q Fiter

Chef Server
& s
el
CHEF 'CHEF server on a VM

Details »

©AddtoEnv | o Quick Deploy

_images/component-details.png
88 openstack

Project -
Admin o
Identity o
Applications &
Catalog a
Environments

Browse

Manage o
Developer o

£ demobox - RegionOne ~ & demobox ~
Applications / Catalog / Environments / Env-1/ Applications / Tomcat

Tomcat

Component | Logs

Component Details
Info
Name

Tomeat

D
82103645-3200-417b-99b2-3dcdbaf14729

Instance name
murano-mnfkbiok8r2ke1-tvrsiokBpoybs-vzsqzwhhhidr

Heat Orchestration stack name
murano-mnfkbiok8r2ke1

RegionOne +

_images/plone-admin.png
® Plone’

Plone is up and running.

Your Plone site has not been added yet:

Create a new Plone site Advanced

Management Interface — low-level technical configuration.
For an introduction to Plone, success stories, demos, providers, visit plone.com.
For documentation, add-ons, support, community, visit plone.org.

_images/plone-ready.png
Displaying 1 item

Name Type Status Last operation

Plone Plone CMS Ready Plone is up and running at 172.16.40.175:8080

Displaying 1 item

_images/quick_env.png
28 openstack 2 demobox - RegionOne ~ & demobox > RegionOne ~

‘Success: The ‘Apache Tomeat'

Project 5 Applications / Catalog / Environmens / quick-env-1 e et
o environment.
min - .

quick-env-1
Identity -
Bpricstons - Components. Topology Deployment History
Catalog N

Application Components App category | All~

Environments. Q
e = & & &

< Apache: CHEF f— docker >
e . Apache HTTP Se. ‘Apache Tomcat Chet Server Docker Nginx Docker Standlon.
Developer .

@ Drop Components here

+ Add Component | I Deploy Tris Environment

Type Status Last operation Time updated Actions

Apache Tomeat Ready to deploy Component draft created

Displaying 1 item

_images/deploy_env.png
28 openstack £ demobox - RegionOne + & demobox ~ RegionOne ~

Project < Applcations / Catalog / Environments / Env-1
Admin © Env-l
Identity .
Bpricstons - Components. Topology Deployment History
Catalog A

Application Components App category | All~

Environments. Q
e = & & L

< Apache: CHEF f— docker >
Manage . Apache HTTP. Apache Tomeat Chet Server Docker MariaDB Docker Nginx Docker Standa..
Developer .

© Drop Components here
+ Add Component
Name Type Status. Last operation Timeupdated _ Actions

Tomcat Apache Tomeat Ready to deploy Component draft created

_images/logs.png
28 openstack

Project -
Admin -
Identity -
Applications &
Catalog a

Environments

Browse
Manage v
Developer <

£ demobox - RegionOne ~

& demobox +

Applications / Catalog / Environments / Demo.

Demo

Components

Topology

Deployment Logs

2016-05-25
2016-05-25
2016-05-25
2016-05-25
2016-05-25
2016-05-25
2016-05-25
2016-05-25
2016-05-25

13:31:09
13:31:11
13
13
13:32:04
13:34:40
13:34:40
13:38:26
13:38:26

RegionOne +

Deployment History | Latest Deployment Log

Action deploy is scheduled

Creating VM for Apache Server.

Creating VM for Tomcat

Instance is created. Deploying Apache.
Instance is created. Deploying Tomcat
Apache is installed.

Apache is available at http://10.0.4.3
Tomcat is available at http://10.0.4.4:8080
Deployment finished

_images/add_component.png
28 openstack £ demobox - RegionOne + & demobox > RegionOne ~

Project 5 Applications / Catalog / Environments / Environment-3
Admin o .

Environment-3
Identity -
Bpricstons - Components. Deployment History
Catalog N

Application Components App category | Al~

Environments. Q
— = c A Nawx i

< CHEF e e docker >
e . Apache HTTP. Chet Server Docker MariaDB Docker Nginx Docker Standal Kubemetes Clu.
Developer .

@© Drop Components here
Name Type status Last operation Time updated ‘Actions

No components

_images/configure-step2.png
Configure Application: com.yourdomain.HelloWorld

Application Name * © Application Name:

‘ Helloworld ‘ Enter a desired name for the application. Just A-Z, a-z,
09, dash and underine are allowed

_images/hello-world-screen-2.png
Displaying 1 item

Name. Type Status Last operation

HelloWorld ‘com.yourdomain.HelloWorld Ready Helo, Alice!

Displaying 1 item

_images/browse_zip_file.png
Import Package

Package Source

File

Application Package * @

No e solcted

Description:

Choose a Zip archive to upload into the catalog.

Packages should contain:
* Manifest file

* Ul definition folder

* Classes definition folder
* Execution plans folder

Note: If the package depends upon other packages and/or
requires specific glance images, those are going to be

installed with it from murano repository.

_images/import_package.png
88 openstack

Project
Admin
Identity
Applications

Catalog

Manage

Developer

Images

Packages

Categories

£ demobox - RegionOne ~
Applications / Manage / Packages

Packages

KeyWord+

Package Name Tenant Name

Active Public Type Version

No items to display.

& demobox v RegionOne v

Created

“+Import Bundie

Updated Actions

_images/topology_kubernetes.png
88 openstack

Project -
Admin o
Identity o
Applications &
Catalog a
Environments

Browse

Manage o

Developer v

2 demobox - RegionTwo ~

Applications / Catalog / Environments / MyEnv.

MyEnv
Components | Topology | Deployment Hsiory

Environment: MyEnv
Status: Deployment faied

Latest Deployment Log

& demobox v

RegionOne v

_images/qs_quick_deploy.png
== Configure Application

Application Name *
ApacheHtipServer
() Enable PHP

Assign Floating IP

: Apache HTTP Server

Apache HTTP Server

Apache License, Version 2.0

Application Name: Enter a desired name for the
‘application. Just A-Z, a2, 0-9, dash and underline are
allowed

Enable PHP: Ad php support to the Apache
WebServer

© Assign Floating IP: Select to true to assign floating
1P automatically

_images/topology_element_2.png

_images/structure.png
contains MuranoPL cass definions (*yam fes)

contains sl the scrpt fles require for an
applcation deployment

execution_plan.template

ﬂ contains dynamic Ul yami defintions.

an appiicaion entry poin. The fl name is fixec.

i animage 0 be used as an appicaion logo

fogopng.

i lsts images f required
st

—

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to Murano Documentation

 		Overview

 		Key features

 		Application catalog

 		Application catalog management

 		Application lifecycle management

 		Target users

 		Cloud administrators

 		Cloud end users

 		Architecture

 		Use cases

 		QuickStart

 		Upload an application

 		Deploy an application

 		Delete an application

 		User Guide

 		Managing environments

 		Create an environment

 		Edit an environment

 		Review an environment

 		Managing applications

 		Import an application package

 		Search for an application in the catalog

 		Delete an application package

 		Add an application to environment

 		Deploy an environment

 		Delete an application

 		Log in to murano-spawned instance

 		Using CLI

 		Install and use the murano client

 		Manage environments

 		Manage packages

 		Manage categories

 		Manage environment templates

 		Deploying environments using CLI

 		Create an environment

 		Create a configuration session

 		Add applications to an environment

 		Verify your object model

 		Deploy your environment

 		Support for OpenStack regions

 		Deploy an app in the current region

 		Associate environments with regions

 		Deploying Murano

 		Deploying murano

 		System requirements

 		Integrate murano with DevStack

 		Install murano manually

 		Configure SSL

 		Prepare a lab for murano

 		System prerequisites

 		Test your lab host performance

 		Baseline data

 		Host optimizations

 		Configuration

 		Network configuration

 		Policy configuration

 		Managing packages

 		Managing packages on engine side

 		Managing images

 		Build an image

 		Manage images

 		Managing categories

 		Murano repository

 		Use an existing repository

 		Set up a custom repository

 		Murano agent

 		Murano-agent on a new VM

 		Interaction with murano-engine

 		Execution plans and execution plan templates

 		Policy enforcement

 		Setting up policy enforcement

 		Creating policy enforcement rules

 		Murano policy enforcement internals

 		Using policy for the base modification of an environment

 		Murano service broker for Cloud Foundry

 		Service broker overview

 		Configure service broker

 		How to use service broker

 		Known issues

 		Useful links

 		Using Glare as a storage for packages

 		DevStack installation

 		Set up Glare API entrypoint manually

 		Troubleshooting

 		Log location

 		Issues during configuration

 		Issues during deployment

 		Application Developer Guide

 		Developing Murano Packages 101

 		Part 1: Creating your first Application Package

 		Part 2: Customizing your Application Package

 		Part 3: Creating a Plone CMS application package

 		Part 4: Refactoring code to use the Application Framework

 		Execution plan template

 		Template sections

 		FormatVersion property

 		Scripts section

 		HOT packages

 		Compose a package

 		MuranoPL Reference

 		YAML

 		YAQL

 		Common class structure

 		MuranoPL Core Library

 		Reflection capabilities in MuranoPL.

 		Static methods and properties

 		Extension methods

 		MuranoPL Metadata

 		Versioning

 		Murano actions

 		Static actions

 		Murano packages

 		Package structure

 		Dynamic UI definition specification

 		Version history

 		Murano package repository

 		Murano bundles

 		Bundle structure

 		Create local bundle

 		Migrating applications between releases

 		Migrate applications from Murano v0.5 to Stable/Juno

 		Migrate applications to Stable/Kilo

 		Migrate applications to Stable/Liberty

 		Migrate applications to Stable/Newton

 		Application unit tests

 		Cinder volume support

 		Attaching Cinder volumes

 		Booting from Cinder volume

 		Multi-region application

 		Set a region for resources

 		Networking and multi-region applications

 		Examples

 		Use-cases

 		Performing application interconnections

 		Using application already installed on the image

 		Interacting with non-OpenStack services

 		Configuring Network Access for VMs

 		Application development framework

 		Framework objectives

 		Quickstart

 		Library overview

 		Framework detailed description

 		Application developer's cookbook

 		Load applications from a local directory

 		Deploy environment using CLI

 		Application unit test framework

 		Garbage collection system in MuranoPL

 		Garbage collector methods

 		Using destruction dependencies

 		FAQ

 		Contributor Guide

 		How to contribute

 		Development guidelines

 		Conventions

 		High-level overview of Murano components

 		Coding guidelines

 		Debug tips

 		Murano plug-ins

 		MuranoPL extension plug-ins

 		MuranoPL package type plug-ins

 		Creating a Murano plug-in

 		Installing a plug-in

 		Plug-in versioning

 		Organization

 		Development environment

 		Testing

 		Testing guidelines

 		Continuous Integration service

 		UI testing

 		Tempest tests

 		Automated testing machinery

 		Documentation guidelines

 		Backporting to stable/branches

 		Upstream support phases

 		Bug nomination process

 		Appendix

 		High-level definitions of Murano concepts

 		Tutorials

 		Integration with Docker

 		Integration with Kubernetes

 		HA and autoscaling

 		REST API specification

 		Murano command-line client

 		Subcommands

 		Murano optional arguments

 		Application catalog API v1 commands

 		Glossary

 		Miscellaneous

 		Murano workflow

 		Step 1. Begin deployment

 		Step 2. Load definitions

 		Step 3. Deploy resources

 		Step 4. Software configuration via murano-agent

 		Step 5. Done

 		Building Murano Image

 		MS Windows image builder for OpenStack Murano

 		Linux Image

 		Upload image into glance

 		Murano automated tests description

 		Murano continuous integration service

 		UI tests

 		Tempest tests

 		Contributing to Murano

 		Contributor License Agreement

 		Project Hosting Details

 		Development Guidelines

 		Coding Guidelines

 		Blueprints and Specs

 		Testing Guidelines

 		Documentation Guidelines

 		Murano Gerrit Dashboard

 		Description

 		URL

 		Configuration

 		Murano API v1 specification

 		General information

 		Glossary

 		Environment API

 		Environment configuration API

 		Environment model API

 		Environment deployments API

 		Application management API

 		Statistic API

 		Actions API

 		Static Actions API

 		Application catalog API

 		Packages

 		Update a package

 		Categories

 		Environment template API

_images/new-env-1.png
Project >

Applications / Catalog / Environments / Demo
Identity >
Demo ==

CATALOG v

Environments. Components Deployment History
Q

gewe Application Components App category | Al~

MANAGE >
A
< ,

comyourdomain Helotora
® Drop Components here

+ Add Component

Displaying 0 items
Name Type

Status Last operation Time updated

No components

_images/topology_wordpress.png
88 openstack

Project
Admin
Identity
Applications

Catalog

Manage

Developer

Environments

Browse

£ tiashchova - RegionOne +.

Aoptcatons 1 Caalog | Envionments | qickenv’s
quick-env-5
Gomporenis | Topoogy | Depioyment Hstory

Environment: quick-env-5
‘Status: Deployed

®

Name: uksykiooccSwi4

Availabiityzone: nova
‘Openstackid: 252b4aag-05b7-4dcc-be0g-
Ocdlbc4d310n

‘Securitygroupname: None

Image: 213054b5-80b6-4c19-a264-100a3104002

10: 140e53e1-6bid-42¢4-bab3-131fc4abs742
Keyname:

Floatingipaddress: None

Flavor: mL.medium

“Type: io.murano.resources.LinuxMuranolnstance
Assignfioatingip: False

Latest Deployment Log

& tiashchova +

RegionOne v

_images/app_details.png
Project v Applications / Catalog / Environments / quick-env-1/ Applications / GitChef

e ~ GitChef

Identity o
Component | Logs
Applications A
Catalog . Component Details
Info
Environments e
GitCher
Browse
D
65b5D810-5990-43ce-a564-210667466523
Manage .
Type
Developer ~ | GiChet
status
Ready

Instance name
murano-lcnktiokOea2e3-nftxuiok0esif3-cmrsizc4qmia.

Heat Orchestration stack name
murano-lcnktiokOeaze3

_images/deploy-log.png
88 openstack & demo ~

Froieet * Deployment information
Admin o
Identity . environments > environment quick-env-2 > deployment at 2015-01-20 04:24:13
Murano o
coniguration [JIS

Application Catalog o

coomens DEPIOYmMenNt Logs

Rrecaloe 3 - Action deploy is scheduled

:24:15 - Motel validation failed:
Manage © ftcenisastywbi: instance Tlavor has RAM size over Z043MB
2015-61-20 04324115 - Deployment finished with errors

_images/topology_element_1.png

_images/app_filter.png
88 openstack

Project -
Admin o
Identity o
Applications &
Catalog a
Environments

Browse

Manage o
Developer o

5 demobox @ RegionOne ~

Applications / Catalog / Browse

Browse

Recent Activity
Docker MariaDB
MariaDB strives to be
MariaDB

the logical choice for
database professionals.
Iooking for a robust,

Details »

©Create Env | o Quick Deploy

App Category: = A~

Rally

Rally (R;lz‘ s an official
benchmarking and
performance analysis

Details »

©Create Env | o Quick Deploy

MongoDB
MongoDB s a cross-
platform document-
oriented database.
Classified as a NoSQL

Details »

©Create Env | Quick Depioy

Environment: Create Environment

& demobox » RegionOne ~

Docker Nginx
NGIMNX ngin (pronounced
“engine-x’) is an open
source reverse proxy
server for HTTP,

Details »

OCreate Env | o Quick Deploy

rally

_images/add_to_env.png
28 openstack = demobox @ RegionOne v & demobox ~ RegionOne +

Project 5 Applications / Catalog / Browse
Admin
Browse
—— M .
Recent Activity
Applications A
Apache Tomcat Apache HTTP S.. Chef Server
cataog - Jr R Mg o Apacho HTT 5 momo
open source software Apache sewer Projectis an CHEF UePoy Open Souce
ErrnTrED implementaton of the effort to develop and CHEF server on a VM
Java Serviet and maintain an open-
Detais »
Browse Details » Details »
Manage - ©AddtoEny | Quick Deploy ©AddtoEny | Quick Deploy ©AddtoEny | Quick Deploy
Developer .
App Category: = A~ Environment: Environment-3 Q Fiter
Apache HTTP S.. Apache Tomcat Chef Server
oo Jr e 5 momo
Apache sewer Projectis an open source software CHEF 9Py Open Source
effort to develop and implementaton of the CHEF server on a VM
maintain an open- Java Serviet and
Detais »
Detais » Detais »

©AddtoEnv | o Quick Deploy f Quick Deploy ©AddtoEnv | o Quick Deploy

_images/app_logs.png
Project

Admin

Identity

Applications

Catalog

Manage

Developer

Environments

Browse

Applications / Catalog / Environments / quick-env-1

quick-env-1
Components Topology Deployment History Latest Deployment Log

Deployment Logs

2016-05-23 12:48:38
2016-05-23 12:48:39
2016-05-23 12:49:39
2016-05-23
2016-05-23 12:51:55

Action deploy is scheduled
Creating VM for Git Chef example
Instance is created. Deploying Git Chef
Git Chef is installed at 10.0.145.3
Deployment finished

