
Murano
Release 2014.2.1

March 16, 2015

Contents

1 Introduction 1
1.1 Murano Installation Guide . 1
1.2 Prepare A Lab For Murano . 13
1.3 Installing and Running the Development Version . 16
1.4 Installing and Running Manually . 16
1.5 MuranoPL: Murano Programming Language . 23
1.6 Murano PL System Class Definitions . 51
1.7 MuranoPL Core Library . 53
1.8 Dynamic UI Definition specification . 64
1.9 Murano workflow . 68
1.10 Composing application package manual . 69
1.11 Uploading HOT templates to the Application Catalog . 72
1.12 Building Murano Image . 75
1.13 Murano Automated Tests Description . 83
1.14 Contributing to Murano . 86
1.15 Development Guidelines . 87
1.16 Murano API v1 specification . 88

2 Indices and tables 105

i

ii

CHAPTER 1

Introduction

Murano Project introduces an application catalog, which allows application developers and cloud administrators to
publish various cloud-ready applications in a browsable categorised catalog. It may be used by the cloud users (includ-
ing the unexperienced ones) to pick-up the needed applications and services and composes the reliable environments
out of them in a “push-the-button” manner.

Key goal is to provide UI and API which allows to compose and deploy composite environments on the Application
abstraction level and then manage their lifecycle.

Murano consists of three source code repositories:

• murano - is the main repository. It contains code for Murano API server, Murano engine and MuranoPL

• murano-agent - agent which runs on guest VMs and executes deployment plan

• murano-dashboard - Murano UI implemented as a plugin for OpenStack Dashboard

This documentation offers information on how Murano works and how to contribute to the project.

Installation

1.1 Murano Installation Guide

1.1.1 Content

Prepare A Lab For Murano

This section provides basic information about lab’s system requirements. It also contains a description of a test which
you may use to check if your hardware fits the requirements. To do this, run the test and compare the results with
baseline data provided.

System prerequisites

Supported Operation Systems

• Ubuntu Server 12.04 LTS

• RHEL/CentOS 6.4

System packages are required for Murano

Ubuntu

1

https://git.openstack.org/cgit/stackforge/murano/
https://git.openstack.org/cgit/stackforge/murano-agent/
https://git.openstack.org/cgit/stackforge/murano-dashboard/

Murano, Release 2014.2.1

• gcc

• python-pip

• python-dev

• libxml2-dev

• libxslt-dev

• libffi-dev

• libmysqlclient-dev

• libpq-dev

• python-openssl

• mysql-client

• python-mysqldb

CentOS

• gcc

• python-pip

• python-devel

• libxml2-devel

• libxslt-devel

• libffi-devel

• postgresql-devel

• pyOpenSSL

• mysql

• MySQL-python

Lab Requirements

Criteria Minimal Recommended
CPU 4 core @ 2.4 GHz 24 core @ 2.67 GHz
RAM 8 GB 24 GB or more
HDD 2 x 500 GB (7200 rpm) 4 x 500 GB (7200

rpm
RAID Software RAID-1 (use mdadm as it will improve read performance almost two

times)
Hardware RAID-10

Table: Hardware requirements

There are a few possible storage configurations except the shown above. All of them were tested and were working
well.

• 1x SSD 500+ GB

• 1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto the HDD and mount the SSD
drive to folder where VM images are)

• 1x HDD (15000 rpm) 500+ GB

2 Chapter 1. Introduction

Murano, Release 2014.2.1

Test Your Lab Host Performance

We have measured time required to boot 1 to 5 instances of Windows system simultaneously. You can use this data as
the baseline to check if your system is fast enough.

You should use sysprepped images for this test, to simulate VM first boot.

Steps to reproduce test:

1. Prepare Windows 2012 Standard (with GUI) image in QCOW2 format. Let’s assume that its name is ws-2012-
std.qcow2

2. Ensure that there is NO KVM PROCESSES on the host. To do this, run command:

># ps aux | grep kvm

3. Make 5 copies of Windows image file:

># for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

4. Create script start-vm.sh in the folder with .qcow2 files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm -m 1024 -drive file=ws-2012-std-$i.qcow2,if=virtio -net user -net nic,model=virtio -nographic -usbdevice tablet -vnc :$i & done

5. Start ONE instance with command below (as root) and measure time between VM’s launch and the moment
when Server Manager window appears. To view VM’s desktop, connect with VNC viewer to your host to VNC
screen :1 (port 5901):

># ./start-vm.sh 1

6. Turn VM off. You may simply kill all KVM processes by

># killall kvm

7. Start FIVE instances with command below (as root) and measure time interval between ALL VM’s launch and the
moment when LAST Server Manager window appears. To view VM’s desktops, connect with VNC viewer to your
host to VNC screens :1 thru :5 (ports 5901-5905):

># ./start-vm.sh 5

8. Turn VMs off. You may simply kill all KVM processes by

># killall kvm

Baseline Data

The table below provides baseline data which we’ve got in our environment.

Avg. Time refers to the lab with recommended hardware configuration, while Max. Time refers to minimal hardware
configuration.

Boot ONE instance Boot FIVE instances
Avg. Time 3m:40s 8m
Max. Time 5m 20m

1.1. Murano Installation Guide 3

Murano, Release 2014.2.1

Host Optimizations

Default KVM installation could be improved to provide better performance.

The following optimizations may improve host performance up to 30%:

• change default scheduler from CFQ to Deadline

• use ksm

• use vhost-net

Installing and Running the Development Version

The contrib/devstack directory contains the files necessary to integrate Murano with Devstack.

1. Follow Devstack documentation to setup a host for Devstack. Then clone Devstack source code.

2. Copy Murano integration scripts to Devstack:

$ cp lib/murano ${DEVSTACK_DIR}/lib
$ cp lib/murano-dashboard ${DEVSTACK_DIR}/lib
$ cp extras.d/70-murano.sh ${DEVSTACK_DIR}/extras.d

3. Create a localrc file as input to devstack.

4. The Murano services are not enabled by default, so they must be enabled in localrc before running
stack.sh. This example localrc file shows all of the settings required for Murano:

Enable Heat
enable_service heat h-api h-api-cfn h-api-cw h-eng

Enable Murano
enable_service murano murano-api murano-engine

5. Deploy your OpenStack Cloud with Murano:

$./stack.sh

Installing and Running Manually

Prepare Environment

Install Prerequisites First you need to install a number of packages with your OS package manager. The list of
packages depends on the OS you use.

Ubuntu
$ sudo apt-get install python-pip python-dev \
> libmysqlclient-dev libpq-dev \
> libxml2-dev libxslt1-dev \
> libffi-dev

Fedora
Note: Fedora support wasn’t thoroughly tested. We do not guarantee that Murano will work on Fedora.

4 Chapter 1. Introduction

https://git.openstack.org/cgit/stackforge/murano/tree/contrib/devstack
http://www.devstack.org/

Murano, Release 2014.2.1

$ sudo yum install gcc python-setuptools python-devel python-pip

CentOS
$ sudo yum install gcc python-setuptools python-devel
$ sudo easy_install pip

Install tox
$ sudo pip install tox

Install And Configure Database Murano can use various database types on backend. For development purposes
SQLite is enough in most cases. For production installations you should use MySQL or PostgreSQL databases.

Warning: Although Murano could use PostgreSQL database on backend, it wasn’t thoroughly tested and should
be used with caution.

To use MySQL database you should install it and create an empty database first:

$ apt-get install python-mysqldb mysql-server

$ mysql -u root -p
mysql> CREATE DATABASE murano;
mysql> GRANT ALL PRIVILEGES ON murano.* TO ’murano’@’localhost’ \

IDENTIFIED BY ’MURANO_DBPASS’;
mysql> exit;

Install the API service and Engine

1. Create a folder which will hold all Murano components.

$ mkdir ~/murano

2. Clone the Murano git repository to the management server.

$ cd ~/murano
$ git clone https://github.com/stackforge/murano

3. Copy the sample configuration from the source tree to their final location.

$ cd ~/murano/murano/etc/murano
$ cp murano.conf.sample murano.conf

4. Edit murano.conf with your favorite editor. Below is an example which contains basic settings your are
likely need to configure.

Note: The example below uses SQLite database. Edit [database] section if you want to use other database
type.

[DEFAULT]
debug = true
verbose = true
rabbit_host = %RABBITMQ_SERVER_IP%
rabbit_userid = %RABBITMQ_USER%

1.1. Murano Installation Guide 5

Murano, Release 2014.2.1

rabbit_password = %RABBITMQ_PASSWORD%
rabbit_virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%
notification_driver = messagingv2

[database]
backend = sqlalchemy
connection = sqlite:///murano.sqlite

[keystone]
auth_url = ’http://%OPENSTACK_HOST_IP%:5000/v2.0’

[keystone_authtoken]
auth_uri = ’http://%OPENSTACK_HOST_IP%:5000/v2.0’
auth_host = ’%OPENSTACK_HOST_IP%’
auth_port = 5000
auth_protocol = http
admin_tenant_name = %OPENSTACK_ADMIN_TENANT%
admin_user = %OPENSTACK_ADMIN_USER%
admin_password = %OPENSTACK_ADMIN_PASSWORD%

[murano]
url = http://%YOUR_HOST_IP%:8082

[rabbitmq]
host = %RABBITMQ_SERVER_IP%
login = %RABBITMQ_USER%
password = %RABBITMQ_PASSWORD%
virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%

5. Create a virtual environment and install Murano prerequisites. We will use tox for that. Virtual environment will
be created under .tox directory.

$ cd ~/murano/murano
$ tox

6. Create database tables for Murano.

$ cd ~/murano/murano
$ tox -e venv -- murano-db-manage \
> --config-file ./etc/murano/murano.conf upgrade

7. Open a new console and launch Murano API. A separate terminal is required because the console will be locked
by a running process.

$ cd ~/murano/murano
$ tox -e venv -- murano-api \
> --config-file ./etc/murano/murano.conf

8. Import Core Murano Library.

$ cd ~/murano/murano
$ tox -e venv -- murano-manage \
> --config-file ./etc/murano/murano.conf \
> import-package ./meta/io.murano

8. Open a new console and launch Murano Engine. A separate terminal is required because the console will be
locked by a running process.

6 Chapter 1. Introduction

Murano, Release 2014.2.1

$ cd ~/murano/murano
$ tox -e venv -- murano-engine --config-file ./etc/murano/murano.conf

Install Murano Dashboard

Murano API & Engine services provide the core of Murano. However, your need a control plane to use
it. This section decribes how to install and run Murano Dashboard.

1. Clone the repository with Murano Dashboard.

$ cd ~/murano
$ git clone https://github.com/stackforge/murano-dashboard

2. Create a virtual environment and install dashboard prerequisites. Again, we use tox for that.

$ cd ~/murano/murano-dashboard
$ tox

3. Install the latest horizon version and all murano-dashboard requirements into the virtual environment:

$ tox -e venv pip install horizon

It may happen, that the last release of horizon will be not capable with latest murano-dashboard
code. In that case, horizon need to be installed from master branch of this repository:
https://github.com/openstack/horizon

4. Copy configuration file for dashboard.

$ cd ~/murano/murano-dashboard/muranodashboard/local
$ cp local_settings.py.sample local_settings.py

5. Edit configuration file.

$ cd ~/murano/murano-dashboard/muranodashboard/local
$ vim ./local_settings.py

...
ALLOWED_HOSTS = ’*’

Provide OpenStack Lab credentials
OPENSTACK_HOST = ’%OPENSTACK_HOST_IP%’

...
Set secret key to prevent it’s generation
SECRET_KEY = ’random_string’

...
DEBUG_PROPAGATE_EXCEPTIONS = DEBUG
...

6. Update settings file

Running Murano dashboard on developer environment implies the use of murano settings file instead
of horizon. However, for the correct setup requires settings file to be synchronized with corresponding
horizon release. But murano-dashboard also have parameters, that should be added to that config. So for
your convenience, Murano has special script that allows to quickly synchronize Django settings file for a
developer installation. update_setting.sh file can be found here.

To display all possible options run:

1.1. Murano Installation Guide 7

https://github.com/stackforge/murano-dashboard/blob/master/update_setting.sh

Murano, Release 2014.2.1

./update_setting.sh --help

Note: Ether output or input parameter should be specified.

• --input={PATH/TO/HORIZON/SETTINGS/FILE} - settings file to which murano settings would be ap-
plied. If omitted, settings from horizon master branch are downloaded.

• --output={PATH/TO/FILE} - file to store script execution result. Will be overwrite if already exist. If
omitted, coincides to the input parameter.

• --tag - horizon release tag name, applied, if no input parameter is provided.

• --remove - if set, Murano parameters would be removed from the settings file.

• --cache-dir={PATH/TO/DIRECTORY} - directory to store intermediate script data. Default is
/tmp/muranodashboard-cache.

• --log-file={PATH/TO/FILE} - file to store the script execution log to a separate file.

7. Run Django server at 127.0.0.1:8000 or provide different IP and PORT parameters.

$ cd ~/murano/murano-dashboard
$ tox -e venv -- python manage.py runserver <IP:PORT>

Development server will be restarted automatically on every code change.

8. Open dashboard using url http://localhost:8000

Import Murano Applications

Murano provides excellent catalog services, but it also requires applications which to provide. This section describes
how to import Murano Applications from Murano App Incubator.

1. Clone Murano App Incubator repository.

$ cd ~/murano
$ git clone https://github.com/murano-project/murano-app-incubator

2. Import every package you need from Murano App Incubator using the command below.

$ cd ~/murano/murano
$ tox -e venv -- murano-manage \
> --config-file ./etc/murano/murano.conf \
> import-package ../murano-app-incubator/%APPLICATION_DIRECTORY_NAME%

Network Configuration

To work with Murano, tenant network in Openstack installation should be configured in a certain way. This configu-
ration may be set up automatically with the provision of several parameters in config file or manually.

Murano has advanced networking features that give you ability to not care about configuring networks for your appli-
cation. By default it will create an isolated network for each environment and join all VMs needed by your application
to that network. To install and configure application in just spawned virtual machine Murano also requires a router
connected to the external network.

8 Chapter 1. Introduction

http://localhost:8000

Murano, Release 2014.2.1

Automatic network configuration To create router automatically, provide the following parameters in config file:

[networking]

external_network = %EXTERNAL_NETWORK_NAME%
router_name = %MURANO_ROUTER_NAME%
create_router = true

To figure out the name of the external network, perform the following command:

$ neutron net-external-list

During the first deploy, required networks and router with specified name will be created and set up.

Manual network configuration

• Step 1. Create public network

• First, you need to check for existence of external networks. Login as admin and go to Project ->
Network -> Network Topology. And check network type in network details at Admin -> Networks
-> Network name page. The same action can be done via CLI by running neutron net-external-list.
To create new external network examine OpenStack documentation.

• Step 2. Create local network

• Go to Project -> Network -> Networks.

• Click Create Network and fill the form.

1.1. Murano Installation Guide 9

http://docs.openstack.org/trunk/install-guide/install/apt/content/neutron_initial-external-network.html

Murano, Release 2014.2.1

• Step 3. Create router

• Go to Project -> Network -> Routers

• Click “Create Router”

• In the “Router Name” field, enter the murano-default-router

If you specify a name other than murano-default-router, it will be necessary to change the
following settings in the config file:

[networking]

router_name = %SPECIFIED_NAME%
create_router = false

• Click on the specified router name

• In the opened view click “Add interface”

• Specify the subnet and IP address

10 Chapter 1. Introduction

Murano, Release 2014.2.1

And check the result in Network Topology tab.

SSL configuration

Murano components are able to work with SSL. This chapter will help your to make proper settings with SSL config-
uration.

1.1. Murano Installation Guide 11

Murano, Release 2014.2.1

HTTPS for Murano API

SSL for Murano API service can be configured in ssl section in /etc/murano/murano.conf. Just point to a
valid SSL certificate. See the example below:

[ssl]
cert_file = PATH
key_file = PATH
ca_file = PATH

• cert_file Path to the certificate file the server should use when binding to an SSL-wrapped socket.

• key_file Path to the private key file the server should use when binding to an SSL-wrapped socket.

• ca_file Path to the CA certificate file the server should use to validate client certificates provided during an SSL
handshake. This is ignored if cert_file and “key_file” are not set.

The use of SSL is automatically started after point to HTTPS protocol instead of HTTP during registration Murano
API service in endpoints (Change publicurl argument to start with https://). SSL for Murano API is implemented like
in any other Openstack component. This realization is based on ssl python module so more information about it can
be found here.

SSL for RabbitMQ

All Murano components communicate with each other by RabbitMQ. This interaction can be encrypted with SSL. By
default all messages in Rabbit MQ are not encrypted. Each RabbitMQ Exchange should be configured separately.

Murano API <-> Rabbit MQ exchange <-> Murano Engine

Edit ssl parameters in default section of /etc/murano/murano.conf. Set rabbit_use_ssl option to true
and configure ssl kombu parameters. Specify the path to the SSL keyfile and SSL CA certificate in a regular format:
/path/to/file without quotes or leave it empty to allow self-signed certificates.

connect over SSL for RabbitMQ (boolean value)
#rabbit_use_ssl=false

SSL version to use (valid only if SSL enabled). valid values
are TLSv1, SSLv23 and SSLv3. SSLv2 may be available on some
distributions (string value)
#kombu_ssl_version=

SSL key file (valid only if SSL enabled) (string value)
#kombu_ssl_keyfile=

SSL cert file (valid only if SSL enabled) (string value)
#kombu_ssl_certfile=

SSL certification authority file (valid only if SSL enabled)
(string value)
#kombu_ssl_ca_certs=

Murano Agent -> Rabbit MQ exchange

In main murano configuration file there is a section ,named rabbitmq, that is responsible for set up communication
between Murano Agent and Rabbit MQ. Just set ssl parameter to True to enable ssl.

[rabbitmq]
host = localhost
port = 5672

12 Chapter 1. Introduction

https://docs.python.org/2/library/ssl.html

Murano, Release 2014.2.1

login = guest
password = guest
virtual_host = /
ssl = True

If you want to configure Murano Agent in a different way change the default template. It can be found in Murano Core
Library, located at /https://github.com/stackforge/murano/blob/master/meta/io.murano/Resources/Agent-v1.template.
Take a look at appSettings section:

<appSettings>
<add key="rabbitmq.host" value="%RABBITMQ_HOST%"/>
<add key="rabbitmq.port" value="%RABBITMQ_PORT%"/>
<add key="rabbitmq.user" value="%RABBITMQ_USER%"/>
<add key="rabbitmq.password" value="%RABBITMQ_PASSWORD%"/>
<add key="rabbitmq.vhost" value="%RABBITMQ_VHOST%"/>
<add key="rabbitmq.inputQueue" value="%RABBITMQ_INPUT_QUEUE%"/>
<add key="rabbitmq.resultExchange" value=""/>
<add key="rabbitmq.resultRoutingKey" value="%RESULT_QUEUE%"/>
<add key="rabbitmq.durableMessages" value="true"/>

<add key="rabbitmq.ssl" value="%RABBITMQ_SSL%"/>
<add key="rabbitmq.allowInvalidCA" value="true"/>
<add key="rabbitmq.sslServerName" value=""/>

</appSettings>

Desired parameter should be set directly to the value of the key that you want to change. Quotes are need to be kept.
Thus you can change “rabbitmq.ssl” and “rabbitmq.port” values to make Rabbit MQ work with this exchange in a
different from Murano-Engine way. After modification, don’t forget to zip and re-upload core library.

SSL for Murano Dashboard

If you are going not to use self-signed certificates additional configuration do not need to be done. Just point
https in the URL. Otherwise, set MURANO_API_INSECURE = True on horizon config. You can find it in
/etc/openstack-dashboard/local_settings.py..

1.2 Prepare A Lab For Murano

This section provides basic information about lab’s system requirements. It also contains a description of a test which
you may use to check if your hardware fits the requirements. To do this, run the test and compare the results with
baseline data provided.

1.2.1 System prerequisites

Supported Operation Systems

• Ubuntu Server 12.04 LTS

• RHEL/CentOS 6.4

System packages are required for Murano

Ubuntu

• gcc

1.2. Prepare A Lab For Murano 13

Murano, Release 2014.2.1

• python-pip

• python-dev

• libxml2-dev

• libxslt-dev

• libffi-dev

• libmysqlclient-dev

• libpq-dev

• python-openssl

• mysql-client

• python-mysqldb

CentOS

• gcc

• python-pip

• python-devel

• libxml2-devel

• libxslt-devel

• libffi-devel

• postgresql-devel

• pyOpenSSL

• mysql

• MySQL-python

1.2.2 Lab Requirements

Criteria Minimal Recommended
CPU 4 core @ 2.4 GHz 24 core @ 2.67 GHz
RAM 8 GB 24 GB or more
HDD 2 x 500 GB (7200 rpm) 4 x 500 GB (7200

rpm
RAID Software RAID-1 (use mdadm as it will improve read performance almost two

times)
Hardware RAID-10

Table: Hardware requirements

There are a few possible storage configurations except the shown above. All of them were tested and were working
well.

• 1x SSD 500+ GB

• 1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto the HDD and mount the SSD
drive to folder where VM images are)

• 1x HDD (15000 rpm) 500+ GB

14 Chapter 1. Introduction

Murano, Release 2014.2.1

1.2.3 Test Your Lab Host Performance

We have measured time required to boot 1 to 5 instances of Windows system simultaneously. You can use this data as
the baseline to check if your system is fast enough.

You should use sysprepped images for this test, to simulate VM first boot.

Steps to reproduce test:

1. Prepare Windows 2012 Standard (with GUI) image in QCOW2 format. Let’s assume that its name is ws-2012-
std.qcow2

2. Ensure that there is NO KVM PROCESSES on the host. To do this, run command:

># ps aux | grep kvm

3. Make 5 copies of Windows image file:

># for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

4. Create script start-vm.sh in the folder with .qcow2 files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm -m 1024 -drive file=ws-2012-std-$i.qcow2,if=virtio -net user -net nic,model=virtio -nographic -usbdevice tablet -vnc :$i & done

5. Start ONE instance with command below (as root) and measure time between VM’s launch and the moment
when Server Manager window appears. To view VM’s desktop, connect with VNC viewer to your host to VNC
screen :1 (port 5901):

># ./start-vm.sh 1

6. Turn VM off. You may simply kill all KVM processes by

># killall kvm

7. Start FIVE instances with command below (as root) and measure time interval between ALL VM’s launch and the
moment when LAST Server Manager window appears. To view VM’s desktops, connect with VNC viewer to your
host to VNC screens :1 thru :5 (ports 5901-5905):

># ./start-vm.sh 5

8. Turn VMs off. You may simply kill all KVM processes by

># killall kvm

1.2.4 Baseline Data

The table below provides baseline data which we’ve got in our environment.

Avg. Time refers to the lab with recommended hardware configuration, while Max. Time refers to minimal hardware
configuration.

Boot ONE instance Boot FIVE instances
Avg. Time 3m:40s 8m
Max. Time 5m 20m

1.2. Prepare A Lab For Murano 15

Murano, Release 2014.2.1

1.2.5 Host Optimizations

Default KVM installation could be improved to provide better performance.

The following optimizations may improve host performance up to 30%:

• change default scheduler from CFQ to Deadline

• use ksm

• use vhost-net

1.3 Installing and Running the Development Version

The contrib/devstack directory contains the files necessary to integrate Murano with Devstack.

1. Follow Devstack documentation to setup a host for Devstack. Then clone Devstack source code.

2. Copy Murano integration scripts to Devstack:

$ cp lib/murano ${DEVSTACK_DIR}/lib
$ cp lib/murano-dashboard ${DEVSTACK_DIR}/lib
$ cp extras.d/70-murano.sh ${DEVSTACK_DIR}/extras.d

3. Create a localrc file as input to devstack.

4. The Murano services are not enabled by default, so they must be enabled in localrc before running
stack.sh. This example localrc file shows all of the settings required for Murano:

Enable Heat
enable_service heat h-api h-api-cfn h-api-cw h-eng

Enable Murano
enable_service murano murano-api murano-engine

5. Deploy your OpenStack Cloud with Murano:

$./stack.sh

1.4 Installing and Running Manually

First you need to install a number of packages with your OS package manager. The list of packages depends on the
OS you use.

$ sudo apt-get install python-pip python-dev \
> libmysqlclient-dev libpq-dev \
> libxml2-dev libxslt1-dev \
> libffi-dev

Note: Fedora support wasn’t thoroughly tested. We do not guarantee that Murano will work on Fedora.

$ sudo yum install gcc python-setuptools python-devel python-pip

$ sudo yum install gcc python-setuptools python-devel
$ sudo easy_install pip

16 Chapter 1. Introduction

https://git.openstack.org/cgit/stackforge/murano/tree/contrib/devstack
http://www.devstack.org/

Murano, Release 2014.2.1

$ sudo pip install tox

Murano can use various database types on backend. For development purposes SQLite is enough in most cases. For
production installations you should use MySQL or PostgreSQL databases.

Warning: Although Murano could use PostgreSQL database on backend, it wasn’t thoroughly tested and should
be used with caution.

To use MySQL database you should install it and create an empty database first:

$ apt-get install python-mysqldb mysql-server

$ mysql -u root -p
mysql> CREATE DATABASE murano;
mysql> GRANT ALL PRIVILEGES ON murano.* TO ’murano’@’localhost’ \

IDENTIFIED BY ’MURANO_DBPASS’;
mysql> exit;

1. Create a folder which will hold all Murano components.

$ mkdir ~/murano

2. Clone the Murano git repository to the management server.

$ cd ~/murano
$ git clone https://github.com/stackforge/murano

3. Copy the sample configuration from the source tree to their final location.

$ cd ~/murano/murano/etc/murano
$ cp murano.conf.sample murano.conf

4. Edit murano.conf with your favorite editor. Below is an example which contains basic settings your are
likely need to configure.

Note: The example below uses SQLite database. Edit [database] section if you want to use other database
type.

[DEFAULT]
debug = true
verbose = true
rabbit_host = %RABBITMQ_SERVER_IP%
rabbit_userid = %RABBITMQ_USER%
rabbit_password = %RABBITMQ_PASSWORD%
rabbit_virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%
notification_driver = messagingv2

[database]
backend = sqlalchemy
connection = sqlite:///murano.sqlite

[keystone]
auth_url = ’http://%OPENSTACK_HOST_IP%:5000/v2.0’

[keystone_authtoken]
auth_uri = ’http://%OPENSTACK_HOST_IP%:5000/v2.0’
auth_host = ’%OPENSTACK_HOST_IP%’
auth_port = 5000

1.4. Installing and Running Manually 17

Murano, Release 2014.2.1

auth_protocol = http
admin_tenant_name = %OPENSTACK_ADMIN_TENANT%
admin_user = %OPENSTACK_ADMIN_USER%
admin_password = %OPENSTACK_ADMIN_PASSWORD%

[murano]
url = http://%YOUR_HOST_IP%:8082

[rabbitmq]
host = %RABBITMQ_SERVER_IP%
login = %RABBITMQ_USER%
password = %RABBITMQ_PASSWORD%
virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%

5. Create a virtual environment and install Murano prerequisites. We will use tox for that. Virtual environment will
be created under .tox directory.

$ cd ~/murano/murano
$ tox

6. Create database tables for Murano.

$ cd ~/murano/murano
$ tox -e venv -- murano-db-manage \
> --config-file ./etc/murano/murano.conf upgrade

7. Open a new console and launch Murano API. A separate terminal is required because the console will be locked
by a running process.

$ cd ~/murano/murano
$ tox -e venv -- murano-api \
> --config-file ./etc/murano/murano.conf

8. Import Core Murano Library.

$ cd ~/murano/murano
$ tox -e venv -- murano-manage \
> --config-file ./etc/murano/murano.conf \
> import-package ./meta/io.murano

8. Open a new console and launch Murano Engine. A separate terminal is required because the console will be
locked by a running process.

$ cd ~/murano/murano
$ tox -e venv -- murano-engine --config-file ./etc/murano/murano.conf

Murano API & Engine services provide the core of Murano. However, your need a control plane to use
it. This section decribes how to install and run Murano Dashboard.

1. Clone the repository with Murano Dashboard.

$ cd ~/murano
$ git clone https://github.com/stackforge/murano-dashboard

2. Create a virtual environment and install dashboard prerequisites. Again, we use tox for that.

$ cd ~/murano/murano-dashboard
$ tox

3. Install the latest horizon version and all murano-dashboard requirements into the virtual environment:

18 Chapter 1. Introduction

Murano, Release 2014.2.1

$ tox -e venv pip install horizon

It may happen, that the last release of horizon will be not capable with latest murano-dashboard
code. In that case, horizon need to be installed from master branch of this repository:
https://github.com/openstack/horizon

4. Copy configuration file for dashboard.

$ cd ~/murano/murano-dashboard/muranodashboard/local
$ cp local_settings.py.sample local_settings.py

5. Edit configuration file.

$ cd ~/murano/murano-dashboard/muranodashboard/local
$ vim ./local_settings.py

...
ALLOWED_HOSTS = ’*’

Provide OpenStack Lab credentials
OPENSTACK_HOST = ’%OPENSTACK_HOST_IP%’

...
Set secret key to prevent it’s generation
SECRET_KEY = ’random_string’

...
DEBUG_PROPAGATE_EXCEPTIONS = DEBUG
...

6. Update settings file

Running Murano dashboard on developer environment implies the use of murano settings file instead
of horizon. However, for the correct setup requires settings file to be synchronized with corresponding
horizon release. But murano-dashboard also have parameters, that should be added to that config. So for
your convenience, Murano has special script that allows to quickly synchronize Django settings file for a
developer installation. update_setting.sh file can be found here.

To display all possible options run:

./update_setting.sh --help

Note: Ether output or input parameter should be specified.

• --input={PATH/TO/HORIZON/SETTINGS/FILE} - settings file to which murano settings would be ap-
plied. If omitted, settings from horizon master branch are downloaded.

• --output={PATH/TO/FILE} - file to store script execution result. Will be overwrite if already exist. If
omitted, coincides to the input parameter.

• --tag - horizon release tag name, applied, if no input parameter is provided.

• --remove - if set, Murano parameters would be removed from the settings file.

• --cache-dir={PATH/TO/DIRECTORY} - directory to store intermediate script data. Default is
/tmp/muranodashboard-cache.

• --log-file={PATH/TO/FILE} - file to store the script execution log to a separate file.

7. Run Django server at 127.0.0.1:8000 or provide different IP and PORT parameters.

1.4. Installing and Running Manually 19

https://github.com/stackforge/murano-dashboard/blob/master/update_setting.sh

Murano, Release 2014.2.1

$ cd ~/murano/murano-dashboard
$ tox -e venv -- python manage.py runserver <IP:PORT>

Development server will be restarted automatically on every code change.

8. Open dashboard using url http://localhost:8000

Murano provides excellent catalog services, but it also requires applications which to provide. This section describes
how to import Murano Applications from Murano App Incubator.

1. Clone Murano App Incubator repository.

$ cd ~/murano
$ git clone https://github.com/murano-project/murano-app-incubator

2. Import every package you need from Murano App Incubator using the command below.

$ cd ~/murano/murano
$ tox -e venv -- murano-manage \
> --config-file ./etc/murano/murano.conf \
> import-package ../murano-app-incubator/%APPLICATION_DIRECTORY_NAME%

To work with Murano, tenant network in Openstack installation should be configured in a certain way. This configu-
ration may be set up automatically with the provision of several parameters in config file or manually.

Murano has advanced networking features that give you ability to not care about configuring networks for your appli-
cation. By default it will create an isolated network for each environment and join all VMs needed by your application
to that network. To install and configure application in just spawned virtual machine Murano also requires a router
connected to the external network.

To create router automatically, provide the following parameters in config file:

[networking]

external_network = %EXTERNAL_NETWORK_NAME%
router_name = %MURANO_ROUTER_NAME%
create_router = true

To figure out the name of the external network, perform the following command:

$ neutron net-external-list

During the first deploy, required networks and router with specified name will be created and set up.

• Step 1. Create public network

• First, you need to check for existence of external networks. Login as admin and go to Project ->
Network -> Network Topology. And check network type in network details at Admin -> Networks
-> Network name page. The same action can be done via CLI by running neutron net-external-list.
To create new external network examine OpenStack documentation.

• Step 2. Create local network

• Go to Project -> Network -> Networks.

• Click Create Network and fill the form.

20 Chapter 1. Introduction

http://localhost:8000
http://docs.openstack.org/trunk/install-guide/install/apt/content/neutron_initial-external-network.html

Murano, Release 2014.2.1

• Step 3. Create router

• Go to Project -> Network -> Routers

• Click “Create Router”

• In the “Router Name” field, enter the murano-default-router

1.4. Installing and Running Manually 21

Murano, Release 2014.2.1

If you specify a name other than murano-default-router, it will be necessary to change the
following settings in the config file:

[networking]

router_name = %SPECIFIED_NAME%
create_router = false

• Click on the specified router name

• In the opened view click “Add interface”

• Specify the subnet and IP address

And check the result in Network Topology tab.

22 Chapter 1. Introduction

Murano, Release 2014.2.1

Background Concepts for Murano

1.5 MuranoPL: Murano Programming Language

1.5.1 Content

YAML

YAML is human-readable data serialization format that is a superset of JSON. Unlike JSON YAML was designed to
be read and written by humans and relies on visual indentation to denote nesting of data structures. This is similar to
how Python uses indentation for block structures instead of curly brackets in most C-like languages. Also YAML can
contain more data types comparing to JSON. See http://yaml.org/ for detailed description of YAML.

MuranoPL was designed to be representable in YAML so that MuranoPL code could remain readable and structured.
Thus usually MuranoPL files are YAML encoded documents. But MuranoPL engine itself doesn’t deal directly with
YAML documents and it is up to hosting application to locate and deserialize definitions of particular classes. This
gives hosting application ability to control where those definitions can be found (file system, database, remote reposi-
tory etc) and possibly use some other serialization formats instead of YAML.

MuranoPL engine relies on host deserialization code to automatically detect YAQL expressions in source definition and to provide them as instances of YaqlExpression class rather than plain strings. Usually YAQL expressions can be distinguished by presence of $ (dollar sign) and operators but in YAML developer can always explicitly state the type by using YAML tags. So

Some text - a string,
$.something() - YAQL
"$.something()" - string (because of quote marks)
!!str $ - a string (because of YAML tag)
!yaql "text" - YAQL (because of YAML tag)

1.5. MuranoPL: Murano Programming Language 23

http://yaml.org/

Murano, Release 2014.2.1

YAQL

YAQL (Yet Another Query Language) is a query language that was also designed as part of Murano project. MuranoPL
makes an extensive use of YAQL. YAQL description can be found here: https://github.com/ativelkov/yaql

In simple words YAQL is a language for expression evaluation. 2 + 2, foo() > bar(), true != false
are all valid YAQL expressions. The interesting thing in YAQL is that it has no built in list of functions. Everything
YAQL can access is customizable. YAQL cannot call any function that was not explicitly registered to be accessible by
YAQL. The same is true for operators. So the result of expression 2 * foo(3, 4) is completely depended on explicitly
provided implementations of “foo” and “operator_*”. YAQL uses dollar sign ($) to access external variables (that
are also explicitly provided by host application) and function arguments. $variable is a syntax to get the value of
variable “$variable”, $1, $2 etc are the names for function arguments. “$” is a name for current object - data on which
the expression is evaluated or a name of a single argument. Thus $ in the beginning of expression and $ in middle of
it can refer to different things.

YAQL has a lot of functions out of the box that can be registered in YAQL context. For example

$.where($.myObj.myScalar > 5 and $.myObj.myArray.len() > 0 and
$.myObj.myArray.any($ = 4)).select($.myObj.myArray[0]) can be executed on $ = array of
objects and has a result of another array that is a filtration and projection of a source data. This is very similar to how
SQL works but uses more Python-like syntax.

Note that there is no assignment operator in YAQL and ‘=’ means comparision operator that is what ‘==’ means in
Python.

Because YAQL has no access to underlying operating system resources and 100% controllable by the host it is secure
to execute YAQL expressions without establishing a trust to executed code. Also because of the functions are not
predefined different functions may be accessible in different contexts. So the YAQL expressions that are used to
specify property contracts are not necessarily valid in workflow definitions.

Common class structure

Here is a common template for class declarations. In sections below I’m going to explain what each section means.
Note that it is in YAML format.

Name: class name
Namespaces: namespaces specification
Extends: [list of parent classes]
Properties: properties declaration
Workflow:

methodName:
Arguments:

- list
- of
- arguments

Body:
- list
- of
- instructions

Thus MuranoPL class is a YAML dictionary with predefined key names. All keys except for Name are optional and
can be omitted (but must be valid if present)

Class name

Class names are alphanumeric names of the classes. By tradition all class names begin with upper-case letter and
written in PascalCasing.

24 Chapter 1. Introduction

https://github.com/ativelkov/yaql

Murano, Release 2014.2.1

In Murano all class names are globally unique. This achieved by means of namespaces. Class name may have explicit
namespace specification (like ns:MyName) or implicit (just MyName which would be equal to =:MyName if = was a
valid in name specification)

Namespaces

Namespaces declaration specifies prefixes that can be used in class body to make long class names shorter.

Namespaces:
=: io.murano.services.windows
srv: io.murano.services
std: io.murano

In example above class name srv:Something would be automatically translated to “io.murano.services.Something”.

“=” means “current namespace” so that “MyClass” would mean “io.murano.services.windows.MyClass” in example
above.

If class name contains period sign (.) in its name then it is assumed to be already fully namespace-qualified and is not
expanded. Thus ns.Myclass would remain as is.

To make class names globally unique it is recommended to have developer’s domain name as part of namespace (as in
example, similar to Java)

Extends

MuranoPL supports multiple inheritance. If present, Extends section lists base classes that are extended. If the list
consists of single entry then it may be written as a scalar string instead of array. If no parents specified (or a key is
omitted) then “io.murano.Object” is assumed making it the root class for all class hierarchies.

Properties

Properties are class attributes that together with methods form public class interface. Usually (but not always) prop-
erties are the values and references to other objects that are required to be entered in environment designer prior to
workflow invocation.

Properties have the following declaration format:

propertyName:
Contract: property contract
Usage: property usage
Default: property default

Contract Contracts are YAQL expressions that say what type of value is expected for the property as well as addi-
tional constraints imposed on the property.

1.5. MuranoPL: Murano Programming Language 25

Murano, Release 2014.2.1

Operation Definition
$.int() integer value (may be null). String values that consist of

digits would be converted to integer
$.int().notNull() mandatory integer

$.string()
$.string().notNull()

the same for strings. If the supplied value is not a string
it will be converted to string

$.bool()
$.bool().notNull()

bools are true and false. 0 is converted to false, other
integers to true

$.class(ns:ClassName)
$.class(ns:ClassName).notNull()

value must be a reference to an instance of specified
class name

$.class(ns:ClassName, ns:DefaultClassName) create instance of ns:DefaultClassName class if no in-
stance provided

$.class(ns:Name).check($.p = 12) value must be of type ns:Name and have a property ‘p’
equal to 12

[$.int()]
[$.int().notNull()]

array of integers. Similar for other types

[$.int().check($ > 0)] array of positive integers (thus not null)
[$.int(), $.string()] array that has at least two elements, first is int and others

are strings

[$.int(), 2]
[$.int(), 2, 5]

array of ints with at least 2 items
... and maximum of 5 items

{ A: $.int(), B: [$.string()] } dictionary with ‘A’ key of type int and ‘B’ - array of
strings

$
[]
{}

any scalar or data structure as is any array any dictionary

{ $.string().notNull(): $.int().notNull() } dictionary string -> int

A: StringMap
$.string().notNull(): $

dictionary with ‘A’ key that must be equal to
‘StringMap’ and other keys be any scalar or data struc-
ture

Usage Usage states purpose of the property. This implies who and how can access it. The following usages are
available:

26 Chapter 1. Introduction

Murano, Release 2014.2.1

Prop-
erty

Explanation

In Input property. Values of such properties are obtained from user and cannot be modified in MuranoPL
workflows. This is default value for Usage key

Out The value is obtained from executing MuranoPL workflow and cannot be modified by the user
InOut Value can be edited by both user and workflow
Const The same as In but once workflow is executed the property cannot be changed neither by user not the

workflow
RuntimeProperty is visible only from within workflows. It neither read from input neither serialized to workflow

output

Usage attribute is optional and can be omitted (which implies In).

If the workflow tries to write to a property that is not declared with one of the types above it is considered to be private
and accessible only to that class (and not serialized to output and thus would be lost upon next deployment). Attempt
to read property that wasn’t initialized causes exception to be thrown.

Default Default is a value that would be used if the property value wasn’t mentioned in input object model (but
not when it is provided as null). Default (if specified) must conform to declared property contract. If Default is not
specified then null is the default.

For properties that are references to other classes Default can modify default values for referenced value. For example

p:
Contract: $.class(MyClass)
Default: {a: 12}

would override default for ‘a’ property of MyClass for instance of MyClass that is created for this property.

Workflow

Workflows are the methods that together describe how the entities that are represented by MuranoPL classes are
deployed.

In typical scenario root object in input data model is of type io.murano.Environment and has a “deploy” method.
Invoking this method causes a series of infrastructure activities (typically by modifying Heat stack) and VM agents
commands that cause execution of deployment scripts. Workflow role is to map data from input object model (or
result of previously executed actions) to parameters of those activities and to initiate those activities in correct order.
Methods have input parameters and can return value to the caller. Methods defined in Workflow section of the class
using the following template:

methodName:
Arguments:

- list
- of
- arguments

Body:
- list
- of
- instructions

Arguments are optional and (if specified) declared using the same syntax as class properties except for Usage attribute
that is meaningless for method parameters. E.g. arguments also have a contract and optional default.

Method body is an array of instructions that got executed sequentially. There are 3 types of instructions that can be
found in workflow body: expressions, assignment and block constructs.

1.5. MuranoPL: Murano Programming Language 27

Murano, Release 2014.2.1

Expressions Expressions are YAQL expressions that are executed for their side effect. All accessible object methods
can be called in expression using $obj.methodName(arguments) syntax.

Expression Explanation

$.methodName()

$this.methodName()

invoke method ‘methodName’ on this (self) object

$.property.methodName()

$this.property.methodName()

invocation of method on object that is in ‘property’
property

$.method(1, 2, 3) methods can have arguments
$.method(1, 2, thirdParameter => 3) named parameters also supported
list($.foo().bar($this.property), $p) complex expressions can be constructed

Assignment Assignments are single-key dictionaries with YAQL expression as key and arbitrary structure as a value.
Such construct evaluated as assignment.

Assignment Explanation
$x: value assigns ‘value’ to local variable $x
$.x: value $this.x:
value

assign value to object’s property

$.x: $.y copy value of property ‘y’ to property ‘x’
$x: [$a, $b] sets $x to array of 2 values $a and $b

$x:

SomeKey:

NestedKey:
$variable

structures of any level of complexity can be evaluated

$.x[0]: value‘ assign value to a first array entry of property x
$.x.append(): value append value to array in property x
$.x.insert(1): value insert value into position 1

$.x.key.subKey: value

$.x[key][subKey]: value

deep dictionary modification

Block constructs Block constructs control program flow. Block constructs are dictionaries that have strings as all
its keys. The following block constructs are available:

28 Chapter 1. Introduction

Murano, Release 2014.2.1

Assignment Explanation
Return: value return value from a method

If: predicate()

Then:

- code

- block

Else:

- code

- block

predicate() is YAQL expressions that must be evaluated
to true or false.
else part is optional
one-line code blocks can be written as a scalars rather
than array.

While: predicate()

Do: | - code | - block

predicate() must be evaluated to true or false

For: variableName

In: collection

Do:

- code

- block

collection must be YAQL expression returning iterable collection or
evaluatable array as in assignment instructions
(like [1, 2, $x])

inside code block loop variable is accessible as $vari-
ableName

Repeat:

Do:

- code

- block

repeat code block specified number of times

Break: breaks from loop

Match:

case1:

- code

- block

case2:

- code

- block

Value: $valueExpression()

Default:

- code

- block

matches result of $valueExpression() against set of pos-
sible values (cases). the code block of first matched
cased is executed.
if not case matched and Default key is present (it is optional)

than Default code block get executed.
case values are constant values (not expressions)

Switch:

$predicate1() :

- code

- block

$predicate2() :

- code

- block

Default:

- code

- block

all code blocks that have their predicate evaluated to true are executed but the order
of predicate evaluation is not fixed

default key is optional.
if no predicate evaluated to true than Default code block
get executed.

Parallel:

- code

- block

Limit: 5

executes all instructions in code block in separate green
threads in parallel
limit is optional and means the maximum number of
concurrent green threads.

1.5. MuranoPL: Murano Programming Language 29

Murano, Release 2014.2.1

Object model

Object model is JSON-serialized representation of objects and their properties. Everything user does in environment
builder (dashboard) is reflected in object model. Object model is sent to App Catalog engine upon user decides to
deploy built environment. On engine side MuranoPL objects are constructed and initialized from received Object
model and predefined method is executed on a root object.

Objects serialized to JSON using the following template:

{
"?": {

"id": "globally unique object ID (UUID)",
"type": "fully namespace-qualified class name",

"optional designer-related entries can be placed here": {
"key": "value"

}
},

"classProperty1": "propertyValue",
"classProperty2": 123,
"classProperty3": ["value1", "value2"],

"reference1": {
"?": {

"id": "object id",
"type": "object type"

},

"property": "value"
},

"reference2": "referenced object id"
}

Objects can be identified as dictionaries that contain ”?” entry. All system fields are hidden in that entry.

There are 2 ways to specify references. The first method (“reference1” in example above) allow inline definition of
object. When instance of referenced object is created outer object becomes its parent (owner) that is responsible for
the object. The object itself may require that its parent (direct or indirect) be of specified type (like all application
require to have Environment somewhere in parent chain).

Second way to reference object is by specifying other object id. That object must be defined somewhere else in object
tree. Object references distinguished from strings having the same value by evaluating property contracts. The former
case would have $.class(Name) while the later $.string() contract.

Murano PL System Class Definitions

Murano program language has system classes, which make deploying process as convenient as it could be. System
classes are used in user class definitions for a custom applications. This article is going to help users to operate with
Murano PL classes without any issues. All classes are located in the murano-engine component and don‘t require
particular import.

• io.murano.system.Resources

• io.murano.system.Agent

• io.murano.system.AgentListener

30 Chapter 1. Introduction

Murano, Release 2014.2.1

• io.murano.system.HeatStack

• io.murano.system.InstanceNotifier

• io.murano.system.NetworkExplorer

• io.murano.system.StatusReporter

io.murano.system.Resources

Used to provide API to all files, located in the Resource directory of application package. Those Resources usually
used in an application deployment and needed to be specified in a workflow definition. Available methods:

• yaml return resource file in yaml format

• string return resource file as string

• json return resource in json format

io.murano.system.Agent

Defines Murano Agent and ways of interacting with it. Available methods:

• call(template, resources) - send an execution plan template and resource object, and wait for an operation to
complete

• send(template, resources) - send execution plan template and resource class instance and continue execution
without waiting for an end of the execution

• callRaw(plan) - send ready-to-perform murano agent execution plan and wait for an operation to complete

• sendRaw(plan) - send ready-to-perform murano agent execution plan and continue workflow execution

• queueName() - returns name of the queue with which Agent is working

io.murano.system.AgentListener

Used for monitoring Murano Agent.

• start() - start to monitor Murano Agent activity

• stop() - stop to monitor Murano Agent activity

• subscribe(message_id, event) - subscribe to the specified Agent event

• queueName() - returns name of the queue with which Agent is working

io.murano.system.HeatStack

Manage Heat stack operations.

• current() - returns current heat template

• parameters() - returns heat template parameters

• reload() - reload heat template

• setTemplate(template) - load heat template

• updateTemplate(template) - update current template with the specified part of heat stack

1.5. MuranoPL: Murano Programming Language 31

Murano, Release 2014.2.1

• output() - result of heat template execution

• push() - commit changes (requires after setTemplate and updateTemplate operations)

• delete() - delete current heat stack

io.murano.system.InstanceNotifier

Monitor application and instance statistics to provide billing feature.

• trackApplication(instance, title, unitCount) - start to monitor an application activity; title, unitCount - are
optional

• untrackApplication(instance) - stop to monitor an application activity

• trackCloudInstance(instance) - start to monitor an instance activity

• untrackCloudInstance(instance) - stop to monitor an instance activity

io.murano.system.NetworkExplorer

Determines and configures network topology.

• getDefaultRouter() - determine default router

• getAvailableCidr(routerId, netId) - searching for non-allocated CIDR

• getDefaultDns() - get dns from config file

• getExternalNetworkIdForRouter(routerId) - Check for router connected to the external network

• getExternalNetworkIdForNetwork(networkId) - For each router this network is connected to check whether the
router has external_gateway set

io.murano.system.StatusReporter

Provides feedback feature. To follow the deployment process in the UI, all status changes should be included in the
application configuration.

• report(instance, msg) - Send message about an application deployment process

• report_error(instance, msg) - Report an error during an application deployment process

MuranoPL Core Library

Some objects and actions could be used in several application deployments. All common parts are grouped into
MuranoPL libraries. Murano core library is a set of classes needed in every deployment. Class names from core
library could be used in the application definitions. This library is located under the meta directory. The following
classes are included into the Murano core library:

io.murano:

• Class: Object

• Class: Application

• Class: SecurityGroupManager

• Class: Environment

32 Chapter 1. Introduction

https://github.com/stackforge/murano/tree/master/meta/io.murano

Murano, Release 2014.2.1

io.murano.resources:

• Class: Instance Resources: - Agent-v1.template - Agent-v2.template - linux-init.sh - windows-init.sh

• Class: Network

io.murano.lib.networks.neutron:

• Class: NewNetwork

Class: Object

Parent class for all MuranoPL classes, which implements initialize method, and setAttr and getAttr methods, which
are defined in the pythonic part of the Object class. All MuranoPL classes are implicitly inherited from this class.

Class: Application

Defines application itself. All custom applications should be derived from this class. Has two properties:

Namespaces:
=: io.murano

Name: Application

Workflow:
reportDeployed:

Arguments:
- title:

Contract: $.string()
Default: null

- unitCount:
Contract: $.int()
Default: null

Body:
- $this.find(Environment).instanceNotifier.trackApplication($this, $title, $unitCount)

reportDestroyed:
Body:

- $this.find(Environment).instanceNotifier.untrackApplication($this)

Class: SecurityGroupManager

Manages security groups during application deployment.

Namespaces:
=: io.murano.system
std: io.murano

Name: SecurityGroupManager

Properties:
environment:
Contract: $.class(std:Environment).notNull()

defaultGroupName:
Contract: $.string()

1.5. MuranoPL: Murano Programming Language 33

Murano, Release 2014.2.1

Usage: Runtime
Default: format(’MuranoSecurityGroup-{0}’, $.environment.name)

Workflow:
addGroupIngress:
Arguments:

- rules:
Contract:
- FromPort: $.int().notNull()
ToPort: $.int().notNull()
IpProtocol: $.string().notNull()
External: $.bool().notNull()

- groupName:
Contract: $.string().notNull()
Default: $this.defaultGroupName

Body:
- $ext_keys:

true:
ext_key: remote_ip_prefix
ext_val: ’0.0.0.0/0’

false:
ext_key: remote_mode
ext_val: remote_group_id

- $stack: $.environment.stack
- $template:

Resources:
$groupName:
Type: ’OS::Neutron::SecurityGroup’
Properties:
description: format(’Composite security group of Murano environment {0}’, $.environment.name)
rules:
- port_range_min: null
port_range_max: null
protocol: icmp
remote_ip_prefix: ’0.0.0.0/0’

- $.environment.stack.updateTemplate($template)

- $ingress: $rules.select(dict(
port_range_min => $.FromPort,
port_range_max => $.ToPort,
protocol => $.IpProtocol,
$ext_keys.get($.External).ext_key => $ext_keys.get($.External).ext_val

))

- $template:
Resources:

$groupName:
Type: ’OS::Neutron::SecurityGroup’
Properties:
rules: $ingress

- $.environment.stack.updateTemplate($template)

Class: Environment

Defines an Environment in terms of deployments process. Groups all the Applications and their related infrastructure,
able to deploy them at once. Environments is intent to group applications to manage them easily.

34 Chapter 1. Introduction

Murano, Release 2014.2.1

• name - an environment name

• applications - list of applications belonging to an environment

• agentListener - property containing a ‘ io.murano.system.AgentListener object, which may be used to interact
with Murano Agent

• stack - a property containing a HeatStack object which may be used to interact with the Heat Service

• instanceNotifier - a property containing a io.murano.system.InstanceNotifier which may be used to keep track
of the amount of deployed instances

• defaultNetworks - a property containing user-defined Networks (io.murano.resources.Network), which may be
used as the default networks for the Instances in this environment

• securityGroupManager- a property containing a SecurityGroupManager object, which may be used to construct
a security group associated with this environment

Namespaces:
=: io.murano
res: io.murano.resources
sys: io.murano.system

Name: Environment

Properties:
name:
Contract: $.string().notNull()

applications:
Contract: [$.class(Application).owned().notNull()]

agentListener:
Contract: $.class(sys:AgentListener)
Usage: Runtime

stack:
Contract: $.class(sys:HeatStack)
Usage: Runtime

instanceNotifier:
Contract: $.class(sys:InstanceNotifier)
Usage: Runtime

defaultNetworks:
Contract:

environment: $.class(res:Network)
flat: $.class(res:Network)

Usage: In

securityGroupManager:
Contract: $.class(sys:SecurityGroupManager)
Usage: Runtime

Workflow:
initialize:
Body:

- $this.agentListener: new(sys:AgentListener, name => $.name)
- $this.stack: new(sys:HeatStack, name => $.name)
- $this.instanceNotifier: new(sys:InstanceNotifier, environment => $this)
- $this.reporter: new(sys:StatusReporter, environment => $this)

1.5. MuranoPL: Murano Programming Language 35

Murano, Release 2014.2.1

- $this.securityGroupManager: new(sys:SecurityGroupManager, environment => $this)

deploy:
Body:

- $.agentListener.start()
- If: len($.applications) = 0

Then:
- $.stack.delete()

Else:
- $.applications.pselect($.deploy())

- $.agentListener.stop()

Class: Instance

Defines virtual machine parameters and manage instance lifecycle: spawning, deploying, joining to the network,
applying security group and destroying.

• name - instance name

• flavor - instance flavor, defining virtual machine ‘hardware’ parameters

• image - instance image, defining operation system

• keyname - key pair name, used to make connect easily to the instance; optional

• agent - configures interaction with Murano Agent using MuranoPL system class

• ipAddresses - list of all IP addresses, assigned to an instance

• networks - configures type of networks, to which instance will be joined. Custom networks, that extends
Network class could be specified and an instance will be connected to them and for a default environ-
ment network or flat network if corresponding values are set to true; without additional configurations,
instance will be joined to the default network that are set in the current environment.

• assignFloatingIp - determines, if floating IP need to be assigned to an instance, default is false

• floatingIpAddress - IP addresses, assigned to an instance after an application deployment

• securityGroupName - security group, to which instance will be joined, could be set; optional

Namespaces:
=: io.murano.resources
std: io.murano
sys: io.murano.system

Name: Instance

Properties:
name:
Contract: $.string().notNull()

flavor:
Contract: $.string().notNull()

image:
Contract: $.string().notNull()

keyname:
Contract: $.string()
Default: null

agent:

36 Chapter 1. Introduction

Murano, Release 2014.2.1

Contract: $.class(sys:Agent)
Usage: Runtime

ipAddresses:
Contract: [$.string()]
Usage: Out

networks:
Contract:

useEnvironmentNetwork: $.bool().notNull()
useFlatNetwork: $.bool().notNull()
customNetworks: [$.class(Network).notNull()]

Default:
useEnvironmentNetwork: true
useFlatNetwork: false
customNetworks: []

assignFloatingIp:
Contract: $.bool().notNull()
Default: false

floatingIpAddress:
Contract: $.string()
Usage: Out

securityGroupName:
Contract: $.string()
Default: null

Workflow:
initialize:
Body:

- $.environment: $.find(std:Environment).require()
- $.agent: new(sys:Agent, host => $)
- $.resources: new(sys:Resources)

deploy:
Body:

- $securityGroupName: coalesce(
$.securityGroupName,
$.environment.securityGroupManager.defaultGroupName

)
- $.createDefaultInstanceSecurityGroupRules($securityGroupName)

- If: $.networks.useEnvironmentNetwork
Then:
$.joinNet($.environment.defaultNetworks.environment, $securityGroupName)

- If: $.networks.useFlatNetwork
Then:
$.joinNet($.environment.defaultNetworks.flat, $securityGroupName)

- $.networks.customNetworks.select($this.joinNet($, $securityGroupName))

- $userData: $.prepareUserData()

- $template:
Resources:

$.name:
Type: ’AWS::EC2::Instance’
Properties:
InstanceType: $.flavor
ImageId: $.image
UserData: $userData
KeyName: $.keyname

1.5. MuranoPL: Murano Programming Language 37

Murano, Release 2014.2.1

Outputs:
format(’{0}-PublicIp’, $.name):
Value:
- Fn::GetAtt: [$.name, PublicIp]

- $.environment.stack.updateTemplate($template)
- $.environment.stack.push()
- $outputs: $.environment.stack.output()
- $.ipAddresses: $outputs.get(format(’{0}-PublicIp’, $this.name))
- $.floatingIpAddress: $outputs.get(format(’{0}-FloatingIPaddress’, $this.name))
- $.environment.instanceNotifier.trackApplication($this)

joinNet:
Arguments:

- net:
Contract: $.class(Network)

- securityGroupName:
Contract: $.string()

Body:
- If: $net != null

Then:
- If: $.assignFloatingIp and (not bool($.getAttr(fipAssigned)))
Then:
- $assignFip: true
- $.setAttr(fipAssigned, true)

Else:
- $assignFip: false

- $net.addHostToNetwork($, $assignFip, $securityGroupName)

destroy:
Body:

- $template: $.environment.stack.current()
- $patchBlock:

op: remove
path: format(’/Resources/{0}’, $.name)

- $template: patch($template, $patchBlock)
- $.environment.stack.setTemplate($template)
- $.environment.stack.push()
- $.environment.instanceNotifier.untrackApplication($this)

createDefaultInstanceSecurityGroupRules:
Arguments:

- groupName:
Contract: $.string().notNull()

Body:

- If: !yaql "’w’ in toLower($.image)"
Then:
- $rules:

- ToPort: 3389
IpProtocol: tcp
FromPort: 3389
External: true

Else:
- $rules:

- ToPort: 22
IpProtocol: tcp
FromPort: 22
External: true

38 Chapter 1. Introduction

Murano, Release 2014.2.1

- $.environment.securityGroupManager.addGroupIngress(
rules => $rules, groupName => $groupName)

getDefaultSecurityRules:
prepareUserData:
Body:

- If: !yaql "’w’ in toLower($.image)"
Then:
- $configFile: $.resources.string(’Agent-v1.template’)
- $initScript: $.resources.string(’windows-init.ps1’)

Else:
- $configFile: $.resources.string(’Agent-v2.template’)
- $initScript: $.resources.string(’linux-init.sh’)

- $configReplacements:
"%RABBITMQ_HOST%": config(rabbitmq, host)
"%RABBITMQ_PORT%": config(rabbitmq, port)
"%RABBITMQ_USER%": config(rabbitmq, login)
"%RABBITMQ_PASSWORD%": config(rabbitmq, password)
"%RABBITMQ_VHOST%": config(rabbitmq, virtual_host)
"%RABBITMQ_SSL%": str(config(rabbitmq, ssl)).toLower()
"%RABBITMQ_INPUT_QUEUE%": $.agent.queueName()
"%RESULT_QUEUE%": $.environment.agentListener.queueName()

- $scriptReplacements:
"%AGENT_CONFIG_BASE64%": base64encode($configFile.replace($configReplacements))
"%INTERNAL_HOSTNAME%": $.name
"%MURANO_SERVER_ADDRESS%": coalesce(config(file_server), config(rabbitmq, host))
"%CA_ROOT_CERT_BASE64%": ""

- Return: $initScript.replace($scriptReplacements)

Instance class uses the following resources:

• Agent-v2.template - Python Murano Agent template (This agent is unified and lately, Windows Agent will be
included into it)

• linux-init.sh - Python Murano Agent initialization script, which sets up an agent with valid information, con-
taining in updated agent template.

• Agent-v1.template - Windows Murano Agent template

• windows-init.sh - Windows Murano Agent initialization script

Class: Network

Base abstract class for all MuranoPL classes, representing networks.

Namespaces:
=: io.murano.resources

Name: Network

Workflow:
addHostToNetwork:
Arguments:

- instance:
Contract: $.class(Instance).notNull()

1.5. MuranoPL: Murano Programming Language 39

Murano, Release 2014.2.1

- assignFloatingIp:
Contract: $.bool().notNull()
Default: false

- securityGroupName:
Contract: $.string()
Default: null

Class: NewNetwork

Defining network type, using in Neutron.

• name - network name

• autoUplink - defines auto uplink network parameter; optional, turned on by default

• autogenerateSubnet - defines auto subnet generation; optional, turned on by default

• subnetCidr - CIDR, defining network subnet, optional

• dnsNameserver - DNS server name, optional

• useDefaultDns - defines ether set default DNS or not, optional, turned on by default

Namespaces:
=: io.murano.lib.networks.neutron
res: io.murano.resources
std: io.murano
sys: io.murano.system

Name: NewNetwork

Extends: res:Network

Properties:
name:
Contract: $.string().notNull()

externalRouterId:
Contract: $.string()
Usage: InOut

autoUplink:
Contract: $.bool().notNull()
Default: true

autogenerateSubnet:
Contract: $.bool().notNull()
Default: true

subnetCidr:
Contract: $.string()
Usage: InOut

dnsNameserver:
Contract: $.string()
Usage: InOut

useDefaultDns:
Contract: $.bool().notNull()

40 Chapter 1. Introduction

Murano, Release 2014.2.1

Default: true

Workflow:
initialize:
Body:

- $.environment: $.find(std:Environment).require()
- $.netExplorer: new(sys:NetworkExplorer)

deploy:
Body:

- $.ensureNetworkConfigured()
- $.environment.instanceNotifier.untrackApplication($this)

addHostToNetwork:
Arguments:

- instance:
Contract: $.class(res:Instance).notNull()

- assignFloatingIp:
Contract: $.bool().notNull()
Default: false

- securityGroupName:
Contract: $.string()
Default: null

Body:
- $.ensureNetworkConfigured()
- $portname: $instance.name + ’-port-to-’ + $.id()
- $template:

Resources:
$portname:
Type: ’OS::Neutron::Port’
Properties:
network_id: {Ref: $.net_res_name}
fixed_ips: [{subnet_id: {Ref: $.subnet_res_name}}]
security_groups:
- Ref: $securityGroupName

$instance.name:
Properties:
NetworkInterfaces:
- Ref: $portname

- $.environment.stack.updateTemplate($template)

- If: $assignFloatingIp
Then:
- $extNetId: $.netExplorer.getExternalNetworkIdForRouter($.externalRouterId)
- If: $extNetId != null

Then:
- $fip_name: $instance.name + ’-FloatingIP-’ + $.id()
- $template:

Resources:
$fip_name:
Type: ’OS::Neutron::FloatingIP’
Properties:
floating_network_id: $extNetId

$instance.name + ’-FloatingIpAssoc-’ + $.id():
Type: ’OS::Neutron::FloatingIPAssociation’
Properties:
floatingip_id:
Ref: $fip_name

1.5. MuranoPL: Murano Programming Language 41

Murano, Release 2014.2.1

port_id:
Ref: $portname

Outputs:
$instance.name + ’-FloatingIPaddress’:
Value:
Fn::GetAtt:
- $fip_name
- floating_ip_address

Description: Floating IP assigned
- $.environment.stack.updateTemplate($template)

ensureNetworkConfigured:
Body:

- If: !yaql "not bool($.getAttr(networkConfigured))"
Then:
- If: $.useDefaultDns and (not bool($.dnsNameserver))
Then:
- $.dnsNameserver: $.netExplorer.getDefaultDns()

- $.net_res_name: $.name + ’-net-’ + $.id()
- $.subnet_res_name: $.name + ’-subnet-’ + $.id()
- $.createNetwork()
- If: $.autoUplink and (not bool($.externalRouterId))
Then:
- $.externalRouterId: $.netExplorer.getDefaultRouter()

- If: $.autogenerateSubnet and (not bool($.subnetCidr))
Then:
- $.subnetCidr: $.netExplorer.getAvailableCidr($.externalRouterId, $.id())

- $.createSubnet()
- If: !yaql "bool($.externalRouterId)"
Then:
- $.createRouterInterface()

- $.environment.stack.push()
- $.setAttr(networkConfigured, true)

createNetwork:
Body:

- $template:
Resources:

$.net_res_name:
Type: ’OS::Neutron::Net’
Properties:
name: $.name

- $.environment.stack.updateTemplate($template)

createSubnet:
Body:

- $template:
Resources:

$.subnet_res_name:
Type: ’OS::Neutron::Subnet’
Properties:
network_id: {Ref: $.net_res_name}
ip_version: 4
dns_nameservers: [$.dnsNameserver]
cidr: $.subnetCidr

42 Chapter 1. Introduction

Murano, Release 2014.2.1

- $.environment.stack.updateTemplate($template)

createRouterInterface:
Body:

- $template:
Resources:
$.name + ’-ri-’ + $.id():
Type: ’OS::Neutron::RouterInterface’
Properties:
router_id: $.externalRouterId
subnet_id: {Ref: $.subnet_res_name}

- $.environment.stack.updateTemplate($template)

1.5.2 YAML

YAML is human-readable data serialization format that is a superset of JSON. Unlike JSON YAML was designed to
be read and written by humans and relies on visual indentation to denote nesting of data structures. This is similar to
how Python uses indentation for block structures instead of curly brackets in most C-like languages. Also YAML can
contain more data types comparing to JSON. See http://yaml.org/ for detailed description of YAML.

MuranoPL was designed to be representable in YAML so that MuranoPL code could remain readable and structured.
Thus usually MuranoPL files are YAML encoded documents. But MuranoPL engine itself doesn’t deal directly with
YAML documents and it is up to hosting application to locate and deserialize definitions of particular classes. This
gives hosting application ability to control where those definitions can be found (file system, database, remote reposi-
tory etc) and possibly use some other serialization formats instead of YAML.

MuranoPL engine relies on host deserialization code to automatically detect YAQL expressions in source definition and to provide them as instances of YaqlExpression class rather than plain strings. Usually YAQL expressions can be distinguished by presence of $ (dollar sign) and operators but in YAML developer can always explicitly state the type by using YAML tags. So

Some text - a string,
$.something() - YAQL
"$.something()" - string (because of quote marks)
!!str $ - a string (because of YAML tag)
!yaql "text" - YAQL (because of YAML tag)

1.5.3 YAQL

YAQL (Yet Another Query Language) is a query language that was also designed as part of Murano project. MuranoPL
makes an extensive use of YAQL. YAQL description can be found here: https://github.com/ativelkov/yaql

In simple words YAQL is a language for expression evaluation. 2 + 2, foo() > bar(), true != false
are all valid YAQL expressions. The interesting thing in YAQL is that it has no built in list of functions. Everything
YAQL can access is customizable. YAQL cannot call any function that was not explicitly registered to be accessible by
YAQL. The same is true for operators. So the result of expression 2 * foo(3, 4) is completely depended on explicitly
provided implementations of “foo” and “operator_*”. YAQL uses dollar sign ($) to access external variables (that
are also explicitly provided by host application) and function arguments. $variable is a syntax to get the value of
variable “$variable”, $1, $2 etc are the names for function arguments. “$” is a name for current object - data on which
the expression is evaluated or a name of a single argument. Thus $ in the beginning of expression and $ in middle of
it can refer to different things.

YAQL has a lot of functions out of the box that can be registered in YAQL context. For example

$.where($.myObj.myScalar > 5 and $.myObj.myArray.len() > 0 and
$.myObj.myArray.any($ = 4)).select($.myObj.myArray[0]) can be executed on $ = array of

1.5. MuranoPL: Murano Programming Language 43

http://yaml.org/
https://github.com/ativelkov/yaql

Murano, Release 2014.2.1

objects and has a result of another array that is a filtration and projection of a source data. This is very similar to how
SQL works but uses more Python-like syntax.

Note that there is no assignment operator in YAQL and ‘=’ means comparision operator that is what ‘==’ means in
Python.

Because YAQL has no access to underlying operating system resources and 100% controllable by the host it is secure
to execute YAQL expressions without establishing a trust to executed code. Also because of the functions are not
predefined different functions may be accessible in different contexts. So the YAQL expressions that are used to
specify property contracts are not necessarily valid in workflow definitions.

1.5.4 Common class structure

Here is a common template for class declarations. In sections below I’m going to explain what each section means.
Note that it is in YAML format.

Name: class name
Namespaces: namespaces specification
Extends: [list of parent classes]
Properties: properties declaration
Workflow:

methodName:
Arguments:

- list
- of
- arguments

Body:
- list
- of
- instructions

Thus MuranoPL class is a YAML dictionary with predefined key names. All keys except for Name are optional and
can be omitted (but must be valid if present)

Class name

Class names are alphanumeric names of the classes. By tradition all class names begin with upper-case letter and
written in PascalCasing.

In Murano all class names are globally unique. This achieved by means of namespaces. Class name may have explicit
namespace specification (like ns:MyName) or implicit (just MyName which would be equal to =:MyName if = was a
valid in name specification)

Namespaces

Namespaces declaration specifies prefixes that can be used in class body to make long class names shorter.

Namespaces:
=: io.murano.services.windows
srv: io.murano.services
std: io.murano

In example above class name srv:Something would be automatically translated to “io.murano.services.Something”.

“=” means “current namespace” so that “MyClass” would mean “io.murano.services.windows.MyClass” in example
above.

44 Chapter 1. Introduction

Murano, Release 2014.2.1

If class name contains period sign (.) in its name then it is assumed to be already fully namespace-qualified and is not
expanded. Thus ns.Myclass would remain as is.

To make class names globally unique it is recommended to have developer’s domain name as part of namespace (as in
example, similar to Java)

Extends

MuranoPL supports multiple inheritance. If present, Extends section lists base classes that are extended. If the list
consists of single entry then it may be written as a scalar string instead of array. If no parents specified (or a key is
omitted) then “io.murano.Object” is assumed making it the root class for all class hierarchies.

Properties

Properties are class attributes that together with methods form public class interface. Usually (but not always) prop-
erties are the values and references to other objects that are required to be entered in environment designer prior to
workflow invocation.

Properties have the following declaration format:

propertyName:
Contract: property contract
Usage: property usage
Default: property default

Contract

Contracts are YAQL expressions that say what type of value is expected for the property as well as additional con-
straints imposed on the property.

1.5. MuranoPL: Murano Programming Language 45

Murano, Release 2014.2.1

Operation Definition
$.int() integer value (may be null). String values that consist of

digits would be converted to integer
$.int().notNull() mandatory integer

$.string()
$.string().notNull()

the same for strings. If the supplied value is not a string
it will be converted to string

$.bool()
$.bool().notNull()

bools are true and false. 0 is converted to false, other
integers to true

$.class(ns:ClassName)
$.class(ns:ClassName).notNull()

value must be a reference to an instance of specified
class name

$.class(ns:ClassName, ns:DefaultClassName) create instance of ns:DefaultClassName class if no in-
stance provided

$.class(ns:Name).check($.p = 12) value must be of type ns:Name and have a property ‘p’
equal to 12

[$.int()]
[$.int().notNull()]

array of integers. Similar for other types

[$.int().check($ > 0)] array of positive integers (thus not null)
[$.int(), $.string()] array that has at least two elements, first is int and others

are strings

[$.int(), 2]
[$.int(), 2, 5]

array of ints with at least 2 items
... and maximum of 5 items

{ A: $.int(), B: [$.string()] } dictionary with ‘A’ key of type int and ‘B’ - array of
strings

$
[]
{}

any scalar or data structure as is any array any dictionary

{ $.string().notNull(): $.int().notNull() } dictionary string -> int

A: StringMap
$.string().notNull(): $

dictionary with ‘A’ key that must be equal to
‘StringMap’ and other keys be any scalar or data struc-
ture

Usage

Usage states purpose of the property. This implies who and how can access it. The following usages are available:

46 Chapter 1. Introduction

Murano, Release 2014.2.1

Prop-
erty

Explanation

In Input property. Values of such properties are obtained from user and cannot be modified in MuranoPL
workflows. This is default value for Usage key

Out The value is obtained from executing MuranoPL workflow and cannot be modified by the user
InOut Value can be edited by both user and workflow
Const The same as In but once workflow is executed the property cannot be changed neither by user not the

workflow
RuntimeProperty is visible only from within workflows. It neither read from input neither serialized to workflow

output

Usage attribute is optional and can be omitted (which implies In).

If the workflow tries to write to a property that is not declared with one of the types above it is considered to be private
and accessible only to that class (and not serialized to output and thus would be lost upon next deployment). Attempt
to read property that wasn’t initialized causes exception to be thrown.

Default

Default is a value that would be used if the property value wasn’t mentioned in input object model (but not when it is
provided as null). Default (if specified) must conform to declared property contract. If Default is not specified then
null is the default.

For properties that are references to other classes Default can modify default values for referenced value. For example

p:
Contract: $.class(MyClass)
Default: {a: 12}

would override default for ‘a’ property of MyClass for instance of MyClass that is created for this property.

Workflow

Workflows are the methods that together describe how the entities that are represented by MuranoPL classes are
deployed.

In typical scenario root object in input data model is of type io.murano.Environment and has a “deploy” method.
Invoking this method causes a series of infrastructure activities (typically by modifying Heat stack) and VM agents
commands that cause execution of deployment scripts. Workflow role is to map data from input object model (or
result of previously executed actions) to parameters of those activities and to initiate those activities in correct order.
Methods have input parameters and can return value to the caller. Methods defined in Workflow section of the class
using the following template:

methodName:
Arguments:

- list
- of
- arguments

Body:
- list
- of
- instructions

Arguments are optional and (if specified) declared using the same syntax as class properties except for Usage attribute
that is meaningless for method parameters. E.g. arguments also have a contract and optional default.

1.5. MuranoPL: Murano Programming Language 47

Murano, Release 2014.2.1

Method body is an array of instructions that got executed sequentially. There are 3 types of instructions that can be
found in workflow body: expressions, assignment and block constructs.

Expressions

Expressions are YAQL expressions that are executed for their side effect. All accessible object methods can be called
in expression using $obj.methodName(arguments) syntax.

Expression Explanation

$.methodName()

$this.methodName()

invoke method ‘methodName’ on this (self) object

$.property.methodName()

$this.property.methodName()

invocation of method on object that is in ‘property’
property

$.method(1, 2, 3) methods can have arguments
$.method(1, 2, thirdParameter => 3) named parameters also supported
list($.foo().bar($this.property), $p) complex expressions can be constructed

Assignment

Assignments are single-key dictionaries with YAQL expression as key and arbitrary structure as a value. Such construct
evaluated as assignment.

Assignment Explanation
$x: value assigns ‘value’ to local variable $x
$.x: value $this.x:
value

assign value to object’s property

$.x: $.y copy value of property ‘y’ to property ‘x’
$x: [$a, $b] sets $x to array of 2 values $a and $b

$x:

SomeKey:

NestedKey:
$variable

structures of any level of complexity can be evaluated

$.x[0]: value‘ assign value to a first array entry of property x
$.x.append(): value append value to array in property x
$.x.insert(1): value insert value into position 1

$.x.key.subKey: value

$.x[key][subKey]: value

deep dictionary modification

48 Chapter 1. Introduction

Murano, Release 2014.2.1

Block constructs

Block constructs control program flow. Block constructs are dictionaries that have strings as all its keys. The following
block constructs are available:

1.5. MuranoPL: Murano Programming Language 49

Murano, Release 2014.2.1

Assignment Explanation
Return: value return value from a method

If: predicate()

Then:

- code

- block

Else:

- code

- block

predicate() is YAQL expressions that must be evaluated
to true or false.
else part is optional
one-line code blocks can be written as a scalars rather
than array.

While: predicate()

Do: | - code | - block

predicate() must be evaluated to true or false

For: variableName

In: collection

Do:

- code

- block

collection must be YAQL expression returning iterable collection or
evaluatable array as in assignment instructions
(like [1, 2, $x])

inside code block loop variable is accessible as $vari-
ableName

Repeat:

Do:

- code

- block

repeat code block specified number of times

Break: breaks from loop

Match:

case1:

- code

- block

case2:

- code

- block

Value: $valueExpression()

Default:

- code

- block

matches result of $valueExpression() against set of pos-
sible values (cases). the code block of first matched
cased is executed.
if not case matched and Default key is present (it is optional)

than Default code block get executed.
case values are constant values (not expressions)

Switch:

$predicate1() :

- code

- block

$predicate2() :

- code

- block

Default:

- code

- block

all code blocks that have their predicate evaluated to true are executed but the order
of predicate evaluation is not fixed

default key is optional.
if no predicate evaluated to true than Default code block
get executed.

Parallel:

- code

- block

Limit: 5

executes all instructions in code block in separate green
threads in parallel
limit is optional and means the maximum number of
concurrent green threads.

50 Chapter 1. Introduction

Murano, Release 2014.2.1

Object model

Object model is JSON-serialized representation of objects and their properties. Everything user does in environment
builder (dashboard) is reflected in object model. Object model is sent to App Catalog engine upon user decides to
deploy built environment. On engine side MuranoPL objects are constructed and initialized from received Object
model and predefined method is executed on a root object.

Objects serialized to JSON using the following template:

{
"?": {

"id": "globally unique object ID (UUID)",
"type": "fully namespace-qualified class name",

"optional designer-related entries can be placed here": {
"key": "value"

}
},

"classProperty1": "propertyValue",
"classProperty2": 123,
"classProperty3": ["value1", "value2"],

"reference1": {
"?": {

"id": "object id",
"type": "object type"

},

"property": "value"
},

"reference2": "referenced object id"
}

Objects can be identified as dictionaries that contain ”?” entry. All system fields are hidden in that entry.

There are 2 ways to specify references. The first method (“reference1” in example above) allow inline definition of
object. When instance of referenced object is created outer object becomes its parent (owner) that is responsible for
the object. The object itself may require that its parent (direct or indirect) be of specified type (like all application
require to have Environment somewhere in parent chain).

Second way to reference object is by specifying other object id. That object must be defined somewhere else in object
tree. Object references distinguished from strings having the same value by evaluating property contracts. The former
case would have $.class(Name) while the later $.string() contract.

1.6 Murano PL System Class Definitions

Murano program language has system classes, which make deploying process as convenient as it could be. System
classes are used in user class definitions for a custom applications. This article is going to help users to operate with
Murano PL classes without any issues. All classes are located in the murano-engine component and don‘t require
particular import.

• io.murano.system.Resources

• io.murano.system.Agent

• io.murano.system.AgentListener

1.6. Murano PL System Class Definitions 51

Murano, Release 2014.2.1

• io.murano.system.HeatStack

• io.murano.system.InstanceNotifier

• io.murano.system.NetworkExplorer

• io.murano.system.StatusReporter

1.6.1 io.murano.system.Resources

Used to provide API to all files, located in the Resource directory of application package. Those Resources usually
used in an application deployment and needed to be specified in a workflow definition. Available methods:

• yaml return resource file in yaml format

• string return resource file as string

• json return resource in json format

1.6.2 io.murano.system.Agent

Defines Murano Agent and ways of interacting with it. Available methods:

• call(template, resources) - send an execution plan template and resource object, and wait for an operation to
complete

• send(template, resources) - send execution plan template and resource class instance and continue execution
without waiting for an end of the execution

• callRaw(plan) - send ready-to-perform murano agent execution plan and wait for an operation to complete

• sendRaw(plan) - send ready-to-perform murano agent execution plan and continue workflow execution

• queueName() - returns name of the queue with which Agent is working

1.6.3 io.murano.system.AgentListener

Used for monitoring Murano Agent.

• start() - start to monitor Murano Agent activity

• stop() - stop to monitor Murano Agent activity

• subscribe(message_id, event) - subscribe to the specified Agent event

• queueName() - returns name of the queue with which Agent is working

1.6.4 io.murano.system.HeatStack

Manage Heat stack operations.

• current() - returns current heat template

• parameters() - returns heat template parameters

• reload() - reload heat template

• setTemplate(template) - load heat template

• updateTemplate(template) - update current template with the specified part of heat stack

52 Chapter 1. Introduction

Murano, Release 2014.2.1

• output() - result of heat template execution

• push() - commit changes (requires after setTemplate and updateTemplate operations)

• delete() - delete current heat stack

1.6.5 io.murano.system.InstanceNotifier

Monitor application and instance statistics to provide billing feature.

• trackApplication(instance, title, unitCount) - start to monitor an application activity; title, unitCount - are
optional

• untrackApplication(instance) - stop to monitor an application activity

• trackCloudInstance(instance) - start to monitor an instance activity

• untrackCloudInstance(instance) - stop to monitor an instance activity

1.6.6 io.murano.system.NetworkExplorer

Determines and configures network topology.

• getDefaultRouter() - determine default router

• getAvailableCidr(routerId, netId) - searching for non-allocated CIDR

• getDefaultDns() - get dns from config file

• getExternalNetworkIdForRouter(routerId) - Check for router connected to the external network

• getExternalNetworkIdForNetwork(networkId) - For each router this network is connected to check whether the
router has external_gateway set

1.6.7 io.murano.system.StatusReporter

Provides feedback feature. To follow the deployment process in the UI, all status changes should be included in the
application configuration.

• report(instance, msg) - Send message about an application deployment process

• report_error(instance, msg) - Report an error during an application deployment process

1.7 MuranoPL Core Library

Some objects and actions could be used in several application deployments. All common parts are grouped into
MuranoPL libraries. Murano core library is a set of classes needed in every deployment. Class names from core
library could be used in the application definitions. This library is located under the meta directory. The following
classes are included into the Murano core library:

io.murano:

• Class: Object

• Class: Application

• Class: SecurityGroupManager

• Class: Environment

1.7. MuranoPL Core Library 53

https://github.com/stackforge/murano/tree/master/meta/io.murano

Murano, Release 2014.2.1

io.murano.resources:

• Class: Instance Resources: - Agent-v1.template - Agent-v2.template - linux-init.sh - windows-init.sh

• Class: Network

io.murano.lib.networks.neutron:

• Class: NewNetwork

1.7.1 Class: Object

Parent class for all MuranoPL classes, which implements initialize method, and setAttr and getAttr methods, which
are defined in the pythonic part of the Object class. All MuranoPL classes are implicitly inherited from this class.

1.7.2 Class: Application

Defines application itself. All custom applications should be derived from this class. Has two properties:

Namespaces:
=: io.murano

Name: Application

Workflow:
reportDeployed:

Arguments:
- title:

Contract: $.string()
Default: null

- unitCount:
Contract: $.int()
Default: null

Body:
- $this.find(Environment).instanceNotifier.trackApplication($this, $title, $unitCount)

reportDestroyed:
Body:

- $this.find(Environment).instanceNotifier.untrackApplication($this)

1.7.3 Class: SecurityGroupManager

Manages security groups during application deployment.

Namespaces:
=: io.murano.system
std: io.murano

Name: SecurityGroupManager

Properties:
environment:
Contract: $.class(std:Environment).notNull()

defaultGroupName:
Contract: $.string()

54 Chapter 1. Introduction

Murano, Release 2014.2.1

Usage: Runtime
Default: format(’MuranoSecurityGroup-{0}’, $.environment.name)

Workflow:
addGroupIngress:
Arguments:

- rules:
Contract:
- FromPort: $.int().notNull()
ToPort: $.int().notNull()
IpProtocol: $.string().notNull()
External: $.bool().notNull()

- groupName:
Contract: $.string().notNull()
Default: $this.defaultGroupName

Body:
- $ext_keys:

true:
ext_key: remote_ip_prefix
ext_val: ’0.0.0.0/0’

false:
ext_key: remote_mode
ext_val: remote_group_id

- $stack: $.environment.stack
- $template:

Resources:
$groupName:
Type: ’OS::Neutron::SecurityGroup’
Properties:
description: format(’Composite security group of Murano environment {0}’, $.environment.name)
rules:
- port_range_min: null
port_range_max: null
protocol: icmp
remote_ip_prefix: ’0.0.0.0/0’

- $.environment.stack.updateTemplate($template)

- $ingress: $rules.select(dict(
port_range_min => $.FromPort,
port_range_max => $.ToPort,
protocol => $.IpProtocol,
$ext_keys.get($.External).ext_key => $ext_keys.get($.External).ext_val

))

- $template:
Resources:

$groupName:
Type: ’OS::Neutron::SecurityGroup’
Properties:
rules: $ingress

- $.environment.stack.updateTemplate($template)

1.7.4 Class: Environment

Defines an Environment in terms of deployments process. Groups all the Applications and their related infrastructure,
able to deploy them at once. Environments is intent to group applications to manage them easily.

1.7. MuranoPL Core Library 55

Murano, Release 2014.2.1

• name - an environment name

• applications - list of applications belonging to an environment

• agentListener - property containing a ‘ io.murano.system.AgentListener object, which may be used to interact
with Murano Agent

• stack - a property containing a HeatStack object which may be used to interact with the Heat Service

• instanceNotifier - a property containing a io.murano.system.InstanceNotifier which may be used to keep track
of the amount of deployed instances

• defaultNetworks - a property containing user-defined Networks (io.murano.resources.Network), which may be
used as the default networks for the Instances in this environment

• securityGroupManager- a property containing a SecurityGroupManager object, which may be used to construct
a security group associated with this environment

Namespaces:
=: io.murano
res: io.murano.resources
sys: io.murano.system

Name: Environment

Properties:
name:
Contract: $.string().notNull()

applications:
Contract: [$.class(Application).owned().notNull()]

agentListener:
Contract: $.class(sys:AgentListener)
Usage: Runtime

stack:
Contract: $.class(sys:HeatStack)
Usage: Runtime

instanceNotifier:
Contract: $.class(sys:InstanceNotifier)
Usage: Runtime

defaultNetworks:
Contract:

environment: $.class(res:Network)
flat: $.class(res:Network)

Usage: In

securityGroupManager:
Contract: $.class(sys:SecurityGroupManager)
Usage: Runtime

Workflow:
initialize:
Body:

- $this.agentListener: new(sys:AgentListener, name => $.name)
- $this.stack: new(sys:HeatStack, name => $.name)
- $this.instanceNotifier: new(sys:InstanceNotifier, environment => $this)
- $this.reporter: new(sys:StatusReporter, environment => $this)

56 Chapter 1. Introduction

Murano, Release 2014.2.1

- $this.securityGroupManager: new(sys:SecurityGroupManager, environment => $this)

deploy:
Body:

- $.agentListener.start()
- If: len($.applications) = 0

Then:
- $.stack.delete()

Else:
- $.applications.pselect($.deploy())

- $.agentListener.stop()

1.7.5 Class: Instance

Defines virtual machine parameters and manage instance lifecycle: spawning, deploying, joining to the network,
applying security group and destroying.

• name - instance name

• flavor - instance flavor, defining virtual machine ‘hardware’ parameters

• image - instance image, defining operation system

• keyname - key pair name, used to make connect easily to the instance; optional

• agent - configures interaction with Murano Agent using MuranoPL system class

• ipAddresses - list of all IP addresses, assigned to an instance

• networks - configures type of networks, to which instance will be joined. Custom networks, that extends
Network class could be specified and an instance will be connected to them and for a default environ-
ment network or flat network if corresponding values are set to true; without additional configurations,
instance will be joined to the default network that are set in the current environment.

• assignFloatingIp - determines, if floating IP need to be assigned to an instance, default is false

• floatingIpAddress - IP addresses, assigned to an instance after an application deployment

• securityGroupName - security group, to which instance will be joined, could be set; optional

Namespaces:
=: io.murano.resources
std: io.murano
sys: io.murano.system

Name: Instance

Properties:
name:
Contract: $.string().notNull()

flavor:
Contract: $.string().notNull()

image:
Contract: $.string().notNull()

keyname:
Contract: $.string()
Default: null

agent:

1.7. MuranoPL Core Library 57

Murano, Release 2014.2.1

Contract: $.class(sys:Agent)
Usage: Runtime

ipAddresses:
Contract: [$.string()]
Usage: Out

networks:
Contract:

useEnvironmentNetwork: $.bool().notNull()
useFlatNetwork: $.bool().notNull()
customNetworks: [$.class(Network).notNull()]

Default:
useEnvironmentNetwork: true
useFlatNetwork: false
customNetworks: []

assignFloatingIp:
Contract: $.bool().notNull()
Default: false

floatingIpAddress:
Contract: $.string()
Usage: Out

securityGroupName:
Contract: $.string()
Default: null

Workflow:
initialize:
Body:

- $.environment: $.find(std:Environment).require()
- $.agent: new(sys:Agent, host => $)
- $.resources: new(sys:Resources)

deploy:
Body:

- $securityGroupName: coalesce(
$.securityGroupName,
$.environment.securityGroupManager.defaultGroupName

)
- $.createDefaultInstanceSecurityGroupRules($securityGroupName)

- If: $.networks.useEnvironmentNetwork
Then:
$.joinNet($.environment.defaultNetworks.environment, $securityGroupName)

- If: $.networks.useFlatNetwork
Then:
$.joinNet($.environment.defaultNetworks.flat, $securityGroupName)

- $.networks.customNetworks.select($this.joinNet($, $securityGroupName))

- $userData: $.prepareUserData()

- $template:
Resources:

$.name:
Type: ’AWS::EC2::Instance’
Properties:
InstanceType: $.flavor
ImageId: $.image
UserData: $userData
KeyName: $.keyname

58 Chapter 1. Introduction

Murano, Release 2014.2.1

Outputs:
format(’{0}-PublicIp’, $.name):
Value:
- Fn::GetAtt: [$.name, PublicIp]

- $.environment.stack.updateTemplate($template)
- $.environment.stack.push()
- $outputs: $.environment.stack.output()
- $.ipAddresses: $outputs.get(format(’{0}-PublicIp’, $this.name))
- $.floatingIpAddress: $outputs.get(format(’{0}-FloatingIPaddress’, $this.name))
- $.environment.instanceNotifier.trackApplication($this)

joinNet:
Arguments:

- net:
Contract: $.class(Network)

- securityGroupName:
Contract: $.string()

Body:
- If: $net != null

Then:
- If: $.assignFloatingIp and (not bool($.getAttr(fipAssigned)))
Then:
- $assignFip: true
- $.setAttr(fipAssigned, true)

Else:
- $assignFip: false

- $net.addHostToNetwork($, $assignFip, $securityGroupName)

destroy:
Body:

- $template: $.environment.stack.current()
- $patchBlock:

op: remove
path: format(’/Resources/{0}’, $.name)

- $template: patch($template, $patchBlock)
- $.environment.stack.setTemplate($template)
- $.environment.stack.push()
- $.environment.instanceNotifier.untrackApplication($this)

createDefaultInstanceSecurityGroupRules:
Arguments:

- groupName:
Contract: $.string().notNull()

Body:

- If: !yaql "’w’ in toLower($.image)"
Then:
- $rules:

- ToPort: 3389
IpProtocol: tcp
FromPort: 3389
External: true

Else:
- $rules:

- ToPort: 22
IpProtocol: tcp
FromPort: 22
External: true

1.7. MuranoPL Core Library 59

Murano, Release 2014.2.1

- $.environment.securityGroupManager.addGroupIngress(
rules => $rules, groupName => $groupName)

getDefaultSecurityRules:
prepareUserData:
Body:

- If: !yaql "’w’ in toLower($.image)"
Then:
- $configFile: $.resources.string(’Agent-v1.template’)
- $initScript: $.resources.string(’windows-init.ps1’)

Else:
- $configFile: $.resources.string(’Agent-v2.template’)
- $initScript: $.resources.string(’linux-init.sh’)

- $configReplacements:
"%RABBITMQ_HOST%": config(rabbitmq, host)
"%RABBITMQ_PORT%": config(rabbitmq, port)
"%RABBITMQ_USER%": config(rabbitmq, login)
"%RABBITMQ_PASSWORD%": config(rabbitmq, password)
"%RABBITMQ_VHOST%": config(rabbitmq, virtual_host)
"%RABBITMQ_SSL%": str(config(rabbitmq, ssl)).toLower()
"%RABBITMQ_INPUT_QUEUE%": $.agent.queueName()
"%RESULT_QUEUE%": $.environment.agentListener.queueName()

- $scriptReplacements:
"%AGENT_CONFIG_BASE64%": base64encode($configFile.replace($configReplacements))
"%INTERNAL_HOSTNAME%": $.name
"%MURANO_SERVER_ADDRESS%": coalesce(config(file_server), config(rabbitmq, host))
"%CA_ROOT_CERT_BASE64%": ""

- Return: $initScript.replace($scriptReplacements)

Instance class uses the following resources:

• Agent-v2.template - Python Murano Agent template (This agent is unified and lately, Windows Agent will be
included into it)

• linux-init.sh - Python Murano Agent initialization script, which sets up an agent with valid information, con-
taining in updated agent template.

• Agent-v1.template - Windows Murano Agent template

• windows-init.sh - Windows Murano Agent initialization script

1.7.6 Class: Network

Base abstract class for all MuranoPL classes, representing networks.

Namespaces:
=: io.murano.resources

Name: Network

Workflow:
addHostToNetwork:
Arguments:

- instance:
Contract: $.class(Instance).notNull()

60 Chapter 1. Introduction

Murano, Release 2014.2.1

- assignFloatingIp:
Contract: $.bool().notNull()
Default: false

- securityGroupName:
Contract: $.string()
Default: null

1.7.7 Class: NewNetwork

Defining network type, using in Neutron.

• name - network name

• autoUplink - defines auto uplink network parameter; optional, turned on by default

• autogenerateSubnet - defines auto subnet generation; optional, turned on by default

• subnetCidr - CIDR, defining network subnet, optional

• dnsNameserver - DNS server name, optional

• useDefaultDns - defines ether set default DNS or not, optional, turned on by default

Namespaces:
=: io.murano.lib.networks.neutron
res: io.murano.resources
std: io.murano
sys: io.murano.system

Name: NewNetwork

Extends: res:Network

Properties:
name:
Contract: $.string().notNull()

externalRouterId:
Contract: $.string()
Usage: InOut

autoUplink:
Contract: $.bool().notNull()
Default: true

autogenerateSubnet:
Contract: $.bool().notNull()
Default: true

subnetCidr:
Contract: $.string()
Usage: InOut

dnsNameserver:
Contract: $.string()
Usage: InOut

useDefaultDns:
Contract: $.bool().notNull()

1.7. MuranoPL Core Library 61

Murano, Release 2014.2.1

Default: true

Workflow:
initialize:
Body:

- $.environment: $.find(std:Environment).require()
- $.netExplorer: new(sys:NetworkExplorer)

deploy:
Body:

- $.ensureNetworkConfigured()
- $.environment.instanceNotifier.untrackApplication($this)

addHostToNetwork:
Arguments:

- instance:
Contract: $.class(res:Instance).notNull()

- assignFloatingIp:
Contract: $.bool().notNull()
Default: false

- securityGroupName:
Contract: $.string()
Default: null

Body:
- $.ensureNetworkConfigured()
- $portname: $instance.name + ’-port-to-’ + $.id()
- $template:

Resources:
$portname:
Type: ’OS::Neutron::Port’
Properties:
network_id: {Ref: $.net_res_name}
fixed_ips: [{subnet_id: {Ref: $.subnet_res_name}}]
security_groups:
- Ref: $securityGroupName

$instance.name:
Properties:
NetworkInterfaces:
- Ref: $portname

- $.environment.stack.updateTemplate($template)

- If: $assignFloatingIp
Then:
- $extNetId: $.netExplorer.getExternalNetworkIdForRouter($.externalRouterId)
- If: $extNetId != null

Then:
- $fip_name: $instance.name + ’-FloatingIP-’ + $.id()
- $template:

Resources:
$fip_name:
Type: ’OS::Neutron::FloatingIP’
Properties:
floating_network_id: $extNetId

$instance.name + ’-FloatingIpAssoc-’ + $.id():
Type: ’OS::Neutron::FloatingIPAssociation’
Properties:
floatingip_id:
Ref: $fip_name

62 Chapter 1. Introduction

Murano, Release 2014.2.1

port_id:
Ref: $portname

Outputs:
$instance.name + ’-FloatingIPaddress’:
Value:
Fn::GetAtt:
- $fip_name
- floating_ip_address

Description: Floating IP assigned
- $.environment.stack.updateTemplate($template)

ensureNetworkConfigured:
Body:

- If: !yaql "not bool($.getAttr(networkConfigured))"
Then:
- If: $.useDefaultDns and (not bool($.dnsNameserver))
Then:
- $.dnsNameserver: $.netExplorer.getDefaultDns()

- $.net_res_name: $.name + ’-net-’ + $.id()
- $.subnet_res_name: $.name + ’-subnet-’ + $.id()
- $.createNetwork()
- If: $.autoUplink and (not bool($.externalRouterId))
Then:
- $.externalRouterId: $.netExplorer.getDefaultRouter()

- If: $.autogenerateSubnet and (not bool($.subnetCidr))
Then:
- $.subnetCidr: $.netExplorer.getAvailableCidr($.externalRouterId, $.id())

- $.createSubnet()
- If: !yaql "bool($.externalRouterId)"
Then:
- $.createRouterInterface()

- $.environment.stack.push()
- $.setAttr(networkConfigured, true)

createNetwork:
Body:

- $template:
Resources:

$.net_res_name:
Type: ’OS::Neutron::Net’
Properties:
name: $.name

- $.environment.stack.updateTemplate($template)

createSubnet:
Body:

- $template:
Resources:

$.subnet_res_name:
Type: ’OS::Neutron::Subnet’
Properties:
network_id: {Ref: $.net_res_name}
ip_version: 4
dns_nameservers: [$.dnsNameserver]
cidr: $.subnetCidr

1.7. MuranoPL Core Library 63

Murano, Release 2014.2.1

- $.environment.stack.updateTemplate($template)

createRouterInterface:
Body:

- $template:
Resources:
$.name + ’-ri-’ + $.id():
Type: ’OS::Neutron::RouterInterface’
Properties:
router_id: $.externalRouterId
subnet_id: {Ref: $.subnet_res_name}

- $.environment.stack.updateTemplate($template)

1.8 Dynamic UI Definition specification

The main purpose of Dynamic UI is to generate application creation forms “on-the-fly”. Murano dashboard doesn’t
know anything about what applications can be deployed and which web form are needed to create application instance.
So all application definitions should contain a yaml file which tells dashboard how to create an application and what
validations are to be applied. This document will help you to compose a valid UI definition for your application.

1.8.1 Structure

UI definition should be a valid yaml file and should contain the following sections (for version 2):

• Version - points out to which syntax version is used, optional

• Templates - optional, auxiliary section, used together with an Application section, optional

• Application - object model description which will be used for application deployment, required

• Forms - web form definitions, required

1.8.2 Version

Version of supported dynamic UI syntax. The latest version is 2. This is optional section, default version is set to 1.
Version mapping: Murano 0.4 - version 1 Murano 0.5 - version 2

1.8.3 Application and Templates

In the Application section an application object model is described. This model will be translated into json and
according to that json application will be deployed. Application section should contain all necessary keys that are
required by murano-engine to deploy an application. Note that under ? section goes system part of the model. You can
pick parameters you got from the user (they should be described in the Forms section) and pick the right place where
they should be set. To do this YAQL is used. All lines are going to be checked for a yaql expressions. Currently, 2
yaql functions are provided for object model generation:

• generateHostname is used for machine hostname generation; it accepts 2 arguments: name pattern (string) and
index (integer). If ‘#’ symbol is present in name pattern, it will be replaced with the index provided. If pattern
is not given, a random name will be generated.

• repeat is used to produce a list of data snippets, given the template snippet (first argument) and number of
times it should be reproduced (second argument). Inside that template snippet current step can be referenced as
$index.

64 Chapter 1. Introduction

https://github.com/ativelkov/yaql/blob/master/README.md

Murano, Release 2014.2.1

Note that while evaluating YAQL expressions referenced from Application section (as well as almost all attributes
inside Forms section, see later) $ root object is set to the list of dictionaries with cleaned forms’ data. So to obtain
cleaned value of e.g. field name of form appConfiguration , you should reference it as $.appConfiguration.name. This
context will be called as standard context throughout the text.

Example:

Templates:
primaryController:

?:
type: io.murano.windows.activeDirectory.PrimaryController

host:
?:
type: io.murano.windows.Host

adminPassword: $.serviceConfiguration.adminPassword
name: generateHostname($.serviceConfiguration.unitNamingPattern, 1)
flavor: $.instanceConfiguration.flavor
image: $.instanceConfiguration.osImage

secondaryController:
?:

type: io.murano.windows.activeDirectory.SecondaryController
host:

?:
type: io.murano.windows.Host

adminPassword: $.serviceConfiguration.adminPassword
name: generateHostname($.serviceConfiguration.unitNamingPattern, $index + 1)
flavor: $.instanceConfiguration.flavor
image: $.instanceConfiguration.osImage

Application:
?:
type: io.murano.windows.activeDirectory.ActiveDirectory

name: $.serviceConfiguration.name
primaryController: $primaryController
secondaryControllers: repeat($secondaryController, $.serviceConfiguration.dcInstances - 1)

1.8.4 Forms

This section describes markup elements for defining forms (which are currently rendered and validated with Django).
Each form has name, field definitions (mandatory) and validator definitions (optionally). Note that each form is splitted
into 2 parts - input area (left side, where all the controls are located) and description area (right side, where descriptions
of the controls are located).

Each field should contain:

• name - system field name, could be any

• type - system field type

Currently supported options for type attribute are:

• string - text field (no inherent validations) with one-line text input

• boolean - boolean field, rendered as a checkbox

• text - same as string, but with a multi-line input

• integer - integer field with an appropriate validation, one-line text input

1.8. Dynamic UI Definition specification 65

Murano, Release 2014.2.1

• password - text field with validation for strong password, rendered as two masked text inputs (second one is for
password confirmation)

• clusterip - specific text field, used for entering cluster IP address (validations for valid IP address syntax and for
that IP to belong to a fixed subnet)

• floatingip - specific boolean field, used for specifying whether or not an instance should have floating IP; DEP-
RECATED FIELD - use boolean field instead

• domain - specific field, used for selecting Active Directory domain from a list (or creating a new Active Directory
application); DEPRECATED FIELD - use io.murano.windows.ActiveDirectory instead

• databaselist - Specific field, a list of databases (comma-separated list of databases’ names, where each name has
the following syntax first symbol should be latin letter or underscore; subsequent symbols can be latin letter,
numeric, underscore, at the sign, number sign or dollar sign), rendered as one-line text input

• flavor - specific field, used for selection instance flavor from a list

• keypair - specific field, used for selecting keypair from a list

• image- specific field, used for selecting instance image from a list

• azone - specific field, used for selecting instance availability zone from a list

• any other value is considered to be a fully qualified name for some Application package and is rendered as a pair
of controls: one for selecting already existing Applications of that type in an Environment, second - for creating
a new Application of that type and selecting it

Other arguments (and whether they are required or not) depends on field’s type and other attributes values. Among the
most common attributes are:

• label - name, that will be displayed in the form; defaults to name being capitalized.

• description - description, that will be displayed in the description area. Use yaml line folding character >- to
keep the correct formatting during data transferring.

• descriptionTitle - title of the description, defaults to label; displayed in the description area

• hidden whether field should be visible or not in the input area. Note that hidden field’s description will still be
visible in the descriptions area (if given). Hidden fields are used storing some data to be used by other, visible
fields.

• minLength, maxLength (for string fields) and minValue, maxValue (for integer fields) are transparently trans-
lated into django validation properties.

• validators is a list of dictionaries, each dictionary should at least have expr key, under that key either some
YAQL <https://github.com/ativelkov/yaql/blob/master/README.md> expression is stored, either one-element
dictionary with regexpValidator key (and some regexp string as value). Another possible key of a validator
dictionary is message, and although it is not required, it is highly desirable to specify it - otherwise, when
validator fails (i.e. regexp doesn’t match or YAQL expression evaluates to false) no message will be shown.
Note that field-level validators use YAQL context different from all other attributes and section: here $ root
object is set to the value of field being validated (to make expressions shorter).

• widgetMedia sets some custom CSS and JavaScript used for the field’s widget rendering. Mostly they are used
to do some client-side field enabling/disabling, hiding/unhiding etc. This is a temporary field which will be
dropped once Version 3 of Dynamic UI is implemented (since it will transparently translate YAQL expressions
into the appropriate JavaScript).

Besides field-level validators form-level validators also exist. They use standard context for YAQL evaluation and
are required when there is need to validate some form’s constraint across several fields.

Example

66 Chapter 1. Introduction

Murano, Release 2014.2.1

Forms:
- serviceConfiguration:

fields:
- name: name
type: string
label: Service Name
description: >-
To identify your service in logs please specify a service name

- name: dcInstances
type: integer
hidden: true
initial: 1
required: false
maxLength: 15
helpText: Optional field for a machine hostname template

- name: unitNamingPattern
type: string
label: Hostname template
description: >-
For your convenience all instance hostnames can be named
in the same way. Enter a name and use # character for incrementation.
For example, host# turns into host1, host2, etc. Please follow Windows
hostname restrictions.

required: false
regexpValidator: ’^(([a-zA-Z0-9#][a-zA-Z0-9-#]*[a-zA-Z0-9#])\.)*([A-Za-z0-9#]|[A-Za-z0-9#][A-Za-z0-9-#]*[A-Za-z0-9#])$’
FIXME: does not work for # turning into 2-digit numbers
maxLength: 15
helpText: Optional field for a machine hostname template
temporaryHack
widgetMedia:
js: [’muranodashboard/js/support_placeholder.js’]
css: {all: [’muranodashboard/css/support_placeholder.css’]}

validators:
if unitNamingPattern is given and dcInstances > 1, then ’#’ should occur in unitNamingPattern
- expr: $.serviceConfiguration.dcInstances < 2 or not $.serviceConfiguration.unitNamingPattern.bool() or ’#’ in$.serviceConfiguration.unitNamingPattern
message: Incrementation symbol "#" is required in the Hostname template

- instanceConfiguration:
fields:
- name: title

type: string
required: false
hidden: true
descriptionTitle: Instance Configuration
description: Specify some instance parameters on which service would be created.

- name: flavor
type: flavor
label: Instance flavor
description: >-
Select registered in Openstack flavor. Consider that service performance
depends on this parameter.

required: false
- name: osImage

type: image
imageType: windows
label: Instance image
description: >-
Select valid image for a service. Image should already be prepared and
registered in glance.

1.8. Dynamic UI Definition specification 67

Murano, Release 2014.2.1

- name: availabilityZone
type: azone
label: Availability zone
description: Select availability zone where service would be installed.
required: false

Full example with Active Directory application form definitions is available here active-directory-yaml

1.9 Murano workflow

What happens when a component is being created in an environment? This document will use the Telnet package
referenced elsewhere as an example. It assumes the package has been previously uploaded to Murano.

1.9.1 Step 1. Begin deployment

The API sends a message that instructs murano-engine, the workflow component of Murano, to deploy an environ-
ment. The message consists of a JSON document containing the class types required to create the environment,
as well as any parameters the user selected prior to deployment. Examples are: * An Class: Environment object
(io.murano.Environment) with a name * An object (or objects) referring to networks that need to be created

or that already exist

• A list of Applications (e.g. io.murano.apps.linux.Telnet). Each Application will contain, or will reference,
anything it requires. The Telnet example, has a property called instance whose contract states it must be of type
io.murano.resources.Instance. In turn the Instance has properties it requires (like a name, a flavor, a keypair
name).

Each object in this model has an ID so that the state of each can be tracked.

The classes that are required are determined by the application’s manifest. In the Telnet example only one class is
explicitly required; the telnet application definition.

The Telnet class definition refers to several other classes. It extends Class: Application and it requires an Class:
Instance. It also refers to the Class: Environment in which it will be contained, sends reports through the environment’s
io.murano.system.StatusReporter and adds security group rules to the Class: SecurityGroupManager.

1.9.2 Step 2. Load definitions

The engine makes a series of requests to the API to download packages it needs. These requests pass the class names
the environment will require, and during this stage the engine will validate that all the required classes exist and are
accessible, and will begin creating them. All Classes whose workflow sections contain an initialize fragment are then
initialized. A typical initialization order would be (defined by the ordering in the model sent to the murano-engine):

• Class: Network

• Class: Instance

• Class: Object

• Class: Environment

68 Chapter 1. Introduction

Murano, Release 2014.2.1

1.9.3 Step 3. Deploy resources

The workflow defined in Environment.deploy is now executed. The first step typically is to initialize the messaging
component that will pay attention to murano-agent (see later). The next stage is to deploy each application the environ-
ment knows about in turn, by running deploy() for each application. This happens concurrently for all the applications
belonging to an instance.

In the Telnet example (under Workflow), the workflow dictates sending a status message (via the environment’s re-
porter, and configuring some security group rules. It is at this stage that the engine first contacts Heat to request
information about any pre-existing resources (and there will be none for a fresh deploy) before updating the new Heat
template with the security group information.

Next it instructs the engine to deploy the instance it relies on. A large part of the interaction with Heat is carried out
at this stage; the first thing an Instance does is add itself to the environment’s network. Since the network doesn’t yet
exist, murano-engine runs the neutron network workflow which pushes template fragments to Heat. These fragments
can define: * Networks * Subnets * Router interfaces

Once this is done the Instance itself constructs a Heat template fragment and again pushes it to Heat. The Instance will
include a userdata script that is run when the instance has started up, and which will configure and run murano-agent.

1.9.4 Step 4. Software configuration via murano-agent

If the workflow includes murano-agent components (and the telnet example does), typically the application workflow
will execute them as the next step.

In the telnet example, the workflow instructs the engine to load DeployTelnet.yaml as YAML, and pass it to the murano-
agent running on the configured instance. This causes the agent to execute the EntryPoint defined in the agent script
(which in this case deploys some packages and sets some iptables rules).

1.9.5 Step 5. Done

After execution is finished, the engine sends a last message indicating that fact; the API receives it and marks the
environment as deployed.

Tutorials

1.10 Composing application package manual

Murano is Application catalog that supports types of applications. This document intends to make composing appli-
cation packages easily.

1.10.1 Step 1. Prepare Execution Plans

An Execution Plan is a set of metadata that describes the installation process of an application in a virtual machine.
It’s a minimal unit of execution that can be triggered in Murano Workflows and should be understandable by Murano
agent. From Execution plans any script can be triggered. It could be any type of scripts which will execute commands
and install application components as the result. Each script may consist of one or more files. Scripts may be reused
across several Execution Plans. One of the scripts should be an entry point and should be specified in a resource
template file in Scripts. Besides the Scripts section the following sections must be presented in a resource template
file:

• FormatVersion - version of Execution Plan syntax format

1.10. Composing application package manual 69

Murano, Release 2014.2.1

• Version - version of Execution Plan

• Name - human-readable name of the Execution Plan

• Parameters - parameters received from MuranoPL

• Body - Python statement, should start with | symbol

• Scripts - dictionary that maps script names to script definitions.

Scripts are the building blocks of Execution Plans and they may be executed as a whole (like a single
piece of code), expose some functions that can be independently called in scripts. This depends
on Deployment Platform and Executor capabilities. One script can be defined with the following
properties

– Type Deployment Platform name that script is targeted to.

– Version optional minimum version of deployment platform/executor required by the script.

– EntryPoint relative path to the file that contains a script entry point

– Files This is an optional array of additional files required for the script. Use <> to specify a
relative path to the file. The root directory is Resource/scripts.

– Options an optional argument of type contains additional options

Example DeployTelnet.template

FormatVersion: 2.0.0
Version: 1.0.0
Name: Deploy Telnet

Parameters:
appName: $appName

Body: |
return deploy(args.appName).stdout

Scripts:
deploy:
Type: Application
Version: 1.0.0
EntryPoint: deployTelnet.sh
Files:

- installer.sh
- common.sh

Options:
captureStdout: true
captureStderr: false

1.10.2 Step 2. Prepare MuranoPL class definitions

MuranoPL classes control application deployment workflow execution. Full information about MuranoPL classes see
here: MuranoPL: Murano Programming Language Example telnet.yaml

Namespaces:
=: io.murano.apps.linux
std: io.murano
res: io.murano.resources

70 Chapter 1. Introduction

Murano, Release 2014.2.1

Name: Telnet

Extends: std:Application

Properties:
name:
Contract: $.string().notNull()

instance:
Contract: $.class(res:Instance).notNull()

Workflow:
deploy:
Body:

- $this.find(std:Environment).reporter.report($this, ’Creating VM for Telnet instace.’)
- $.instance.deploy()
- $this.find(std:Environment).reporter.report($this, ’Instance is created. Setup Telnet service.’)
- $resources: new(’io.murano.system.Resources’)
Deploy Telnet
- $template: $resources.yaml(’DeployTelnet.template’)
- $.instance.agent.call($template, $resources)
- $this.find(std:Environment).reporter.report($this, ’Telnet service setup is done.’)

Note, that

• io.murano.system.Resources is a system class, defined in MuranoPL. More information about MuranoPL system
classes is available here: Murano PL System Class Definitions.

• io.murano.resources.Instance is a class, defined in the core Murano library, which is available here. This library
contains Murano Agent templates and virtual machine initialization scripts.

• $this.find(std:Environment).reporter.report($this, ‘Creating VM for Telnet instance.’) - this is the way of sending
reports to Murano dashboard during deployment

1.10.3 Step 3. Prepare dynamic UI form definition

Create a form definition in a yaml format. Before configuring a form, compose a list of parameters that will be required
to set by a user. Some form fields that are responsible for choosing a flavor, image and availability zone are better
to use in every application creation wizard. Syntax of Dynamic UI can be found see here: Dynamic UI Definition
specification Full example with Telnet application form definition telnet-yaml.

1.10.4 Step 4. Prepare application logo

Find or create a simple image (in a .png format) associated with your application. Is should be small and have a square
shape. You can specify any name of your image. In our example, let’s name it telnet.png.

1.10.5 Step 5. Prepare manifest file

General application metadata should be described in the application manifest file. It should be in a yaml format and
should have the following sections

• Format - version of a manifest syntax format

• Type - package type. Valid choices are Library and Application

1.10. Composing application package manual 71

Murano, Release 2014.2.1

• Name - human-readable application name

• Description - a brief description of an application

• Author - person or company name which created an application package

• Classes - MuranoPL class list, on which application deployment is based

• Tags - list of words, associated with this application. Will be helpful during the search. Optional parameter

Example manifest.yaml

Format: 1.0
Type: Application
FullName: io.murano.apps.linux.Telnet
Name: Telnet
Description: |
Telnet is the traditional protocol for making remote console connections over TCP.

Author: ’Mirantis, Inc’
Tags: [Linux, connection]
Classes:
io.murano.apps.linux.Telnet: telnet.yaml

UI: telnet.yaml
Logo: telnet.png

1.10.6 Step 6. Compose a zip archive

An application archive should have the following structure

• Classes folder MuranoPL class definitions should be put inside this folder

• Resources folder This folder should contain Execution scripts

– Scripts folder All script files, needed for an application deployment should be placed here

• UI folder Place dynamic ui yaml definitions here or skip to use the default name ui.yaml

• logo.png Image file should be placed in the root folder. It can have any name, just specify it in the manifest file
or skip to use default logo.png name

• manifest.yaml Application manifest file. It’s an application entry point. The file name is fixed.

Congratulations! Your application is ready to be uploaded to an Application Catalog.

1.11 Uploading HOT templates to the Application Catalog

Murano is an Application catalog which intends to support applications, defined in different formats. As a first step
to universality, heat orchestration template support was added. It means that any heat template could be added as a
separate application into the Application Catalog. This could be done in two ways: manual and automatic.

1.11.1 Automatic package composing

Before uploading an application into the catalog, it should be prepared and archived. Murano command line will do
all preparation for you. Just choose the desired Heat Orchestration Template and perform the following command:

murano package-create --template wordpress/template.yaml

Note, that optional parameters could be specified:

72 Chapter 1. Introduction

Murano, Release 2014.2.1

–name Application name, copied from template by default

–logo Application square logo, by default heat logo will be used

–description Text information about an application, by default copied from template

–author Name of application author, by default is set to

–output Name of the output file archive to save locally

–full-name Fully qualified domain name - domain name that specifies exact application location

Note: To performing this command python-muranoclient should be installed in the system

As the result, application definition archive will be ready for an uploading.

1.11.2 Manual package composing

Application package could be composed manually. Follow the 5 steps below.

• Step 1. Choose the desired heat orchestration template

• Step 2. Rename it to template.yaml

• Step 3. Prepare application logo (optional step)

It could be any picture associated with the application.

• Step 4. Create manifest.yaml file

All service information about the application is contained here. Specify the following parameters:

Format Defines application definition format; should be set to Heat.HOT/1.0

Type Defines manifest type, should be set to Application

FullName Unique name which will be used to identify the application in Murano Catalog

Description Text information about an application

Author Name of application author or company

Tags Keywords, associated with the application

Logo Name of the application logo file

Take a look at the example:

Format: Heat.HOT/1.0
Type: Application
FullName: io.murano.apps.linux.Wordpress
Name: Wordpress
Description: |
WordPress is web software you can use to create a beautiful website or blog.
This template installs a single-instance WordPress deployment using a local
MySQL database to store the data.

Author: ’Openstack, Inc’
Tags: [Linux, connection]
Logo: logo.png

• Step 5. Create a zip archive, containing specified files(template.yaml, manifest.yaml, logo.png)

1.11. Uploading HOT templates to the Application Catalog 73

Murano, Release 2014.2.1

1.11.3 Package uploading

After application package is ready, it can be uploaded to the catalog in two ways:

• Using murano CLI

During uploading, it’s required to provide category, that application belongs to. To browse all available cate-
gories preform:

murano category-list

Specify any suitable category and path to the application archive.

murano package-import --category=Web wordpress.zip

• Using Murano Dashboard

Package uploading is available for admin users at Murano -> Manage -> Packages page.

After that, application is available in the Catalog and could be selected for a deployment.

74 Chapter 1. Introduction

Murano, Release 2014.2.1

1.12 Building Murano Image

1.12.1 Windows Image

Murano requires a Windows Image in QCOW2 format to be builded and uploaded into Glance.

The easiest way to build Windows image for Murano is to build it on the host where your OpenStack is installed.

Install Required Packages

Note

Please check that hardware virtualization supported and enabled in BIOS.

The following packages should be installed on any host which will be used to build Windows Image:

• ipxe-qemu

• kvm-ipxe

• qemu-kvm

• munin-libvirt-plugins

• python-libvirt

• virt-goodies

• virt-manager

• virt-top

• virt-what

• virtinst

• python

On Ubuntu you could install them using the command below:

># apt-get install ipxe-qemu kvm-ipxe qemu-kvm virt-goodies \
virtinst virt-manager libvirt0 libvirt-bin \
munin-libvirt-plugins python python-libvirt \
python-libxml2 python-minimal python-pycurl \
python-pyorbit python-requests python-six \
samba samba-common openssh-server virt-top virt-what

Configure Shared Resource

Configure samba based share.

># mkdir -p /opt/samba/share
># chown -R nobody:nogroup /opt/samba/share

Configure samba server (/etc/samba/smb.conf).
...
[global]

...
security = user

...

1.12. Building Murano Image 75

Murano, Release 2014.2.1

[share]
comment = Deployment Share
path = /opt/samba/share
browsable = yes
read only = no
create mask = 0755
guest ok = yes
guest account = nobody

...

Restart services.

># service smbd restart
># service nmbd restart

Prerequisites

Download the files below and copy them into their places in your ${SHARE_PATH} folder (we usually use
/opt/samba/share as ${SHARE_PATH}):

• Windows 2012 Server ISO evaluation version

– ${SHARE_PATH}/libvirt/images/ws-2012-eval.iso

– http://technet.microsoft.com/en-us/evalcenter/hh670538.aspx

• VirtIO drivers for Windows

– ${SHARE_PATH}/libvirt/images/virtio-win-0.1-74.iso

– http://alt.fedoraproject.org/pub/alt/virtio-win/stable/virtio-win-0.1-74.iso

• CloudBase-Init for Windows

– ${SHARE_PATH}/share/files/CloudbaseInitSetup_Beta.msi

– https://www.cloudbase.it/downloads/CloudbaseInitSetup_Beta.msi

• Far Manager

– ${SHARE_PATH}/share/files/Far30b3367.x64.20130717.msi

– http://www.farmanager.com/files/Far30b3525.x64.20130717.msi

• Git client

– ${SHARE_PATH}/share/files/Git-1.8.1.2-preview20130601.exe

– https://msysgit.googlecode.com/files/Git-1.8.3-preview20130601.exe

• Sysinternals Suite

– ${SHARE_PATH}/share/files/SysinternalsSuite.zip

– http://download.sysinternals.com/files/SysinternalsSuite.zip

• unzip.exe tool

– ${SHARE_PATH}/share/files/unzip.exe

– https://www.dropbox.com/sh/zthldcxnp6r4flm/AACwiyfcrlGDt3ygCFHrbwMra/unzip.exe

• PowerShell v3

– ${SHARE_PATH}/share/files/Windows6.1-KB2506143-x64.msu

76 Chapter 1. Introduction

http://technet.microsoft.com/en-us/evalcenter/hh670538.aspx
http://alt.fedoraproject.org/pub/alt/virtio-win/stable/virtio-win-0.1-74.iso
https://www.cloudbase.it/downloads/CloudbaseInitSetup_Beta.msi
http://www.farmanager.com/files/Far30b3525.x64.20130717.msi
https://msysgit.googlecode.com/files/Git-1.8.3-preview20130601.exe
http://download.sysinternals.com/files/SysinternalsSuite.zip
https://www.dropbox.com/sh/zthldcxnp6r4flm/AACwiyfcrlGDt3ygCFHrbwMra/unzip.exe

Murano, Release 2014.2.1

– http://www.microsoft.com/en-us/download/details.aspx?id=34595

• .NET 4.0

– ${SHARE_PATH}/share/files/dotNetFx40_Full_x86_x64.exe

– http://www.microsoft.com/en-us/download/details.aspx?id=17718

• .NET 4.5

– ${SHARE_PATH}/share/files/dotNetFx45_Full_setup.exe

– http://www.microsoft.com/en-us/download/details.aspx?id=30653

• Murano Agent

– ${SHARE_PATH}/share/files/MuranoAgent.zip

– https://www.dropbox.com/sh/zthldcxnp6r4flm/AADh6LkVkcw2j8nKZevqedHja/MuranoAgent.zip

Additional Software

This section describes additional software which is required to build an Windows Image.

Windows ADK

Windows Assessment and Deployment Kit (ADK) for Windows® 8 is required to build your own answer files for auto
unattended Windows installation.

You can dowload it from http://www.microsoft.com/en-us/download/details.aspx?id=30652.

PuTTY

PuTTY is a useful tool to manage your Linux boxes via SSH.

You can download it from http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

Windows Server ISO image

We use the following Windows installation images:

• Windows Server 2008 R2

– Image Name: 7601.17514.101119-1850_x64fre_server_eval_en-us-GRMSXEVAL_EN_DVD.iso

– URL: http://www.microsoft.com/en-us/download/details.aspx?id=11093

• Windows Server 2012

• Image Name: 9200.16384.WIN8_RTM.120725-1247_X64FRE_SERVER_EVAL_EN-US-
HRM_SSS_X64FREE_EN-US_DV5.iso

• URL: http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx?ocid=&wt.mc_id=TEC_108_1_33

VirtIO Red Hat drivers ISO image

Warning

Please, choose stable version instead of latest, We’ve got errors with unstable drivers during guest unat-
tended install.

Download drivers from http://alt.fedoraproject.org/pub/alt/virtio-win/stable/

Floppy Image With Unattended File

Run following commands as root:

1. Create emtpy floppy image in your home folder

1.12. Building Murano Image 77

http://www.microsoft.com/en-us/download/details.aspx?id=34595
http://www.microsoft.com/en-us/download/details.aspx?id=17718
http://www.microsoft.com/en-us/download/details.aspx?id=30653
https://www.dropbox.com/sh/zthldcxnp6r4flm/AADh6LkVkcw2j8nKZevqedHja/MuranoAgent.zip
http://www.microsoft.com/en-us/download/details.aspx?id=30652
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.microsoft.com/en-us/download/details.aspx?id=11093
http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx?ocid=&wt.mc_id=TEC_108_1_33
http://alt.fedoraproject.org/pub/alt/virtio-win/stable/

Murano, Release 2014.2.1

># dd bs=512 count=2880 \
if=/dev/zero of=~/floppy.img \
mkfs.msdos ~/floppy.img

2. Mount the image to /media/floppy

># mkdir /media/floppy mount -o loop \
~/floppy.img /media/floppy

3. Download autounattend.xml file from https://raw.githubusercontent.com/stackforge/murano-
deployment/master/image-builder/share/files/ws-2012-std/autounattend.xml.template

># cd ~
># wget https://raw.githubusercontent.com/stackforge/murano-deployment/master/image-builder/share/files/ws-2012-std/autounattend.xml.template

4. Copy our autounattend.xml to /media/floppy

># cp ~/autounattend.xml /media/floppy

5. Unmount the image

># umount /media/floppy

Build Windows Image (Automatic Way)

1. Clone murano-deployment repository

># git clone git://github.com/stackforge/murano-deployment.git

2. Change directory to murano-deployment/image-builder folder.

3. Create folder structure for image builder

># make build-root

4. Create shared resource

Add to /etc/samba/smb.conf.

[image-builder-share]
comment = Image Builder Share
browsable = yes
path = /opt/image-builder/share
guest ok = yes
guest user = nobody
read only = no
create mask = 0755

Restart samba services.

># restart smbd && restart nmbd

5. Test that all required files are in place

># make test-build-files

6. Get list of available images

># make

7. Run image build process

78 Chapter 1. Introduction

https://raw.githubusercontent.com/stackforge/murano-deployment/master/image-builder/share/files/ws-2012-std/autounattend.xml.template
https://raw.githubusercontent.com/stackforge/murano-deployment/master/image-builder/share/files/ws-2012-std/autounattend.xml.template

Murano, Release 2014.2.1

># make ws-2012-std

8. Wait until process finishes

9. The image file ws-2012-std.qcow2 should be stored under /opt/image-builder/share/images folder.

Build Windows Image (Manual Way)

Warning

Please note that the preferred way to build images is to use Automated Build described in the previous
chapter.

Get Post-Install Scripts

There are a few scripts which perform all the required post-installation tasks.

Package installation tasks are performed by script named wpi.ps1.

Download it from https://raw.github.com/stackforge/murano-deployment/master/image-builder/share/scripts/ws-
2012-std/wpi.ps1

Note

There are a few scripts named wpi.ps1, each supports only one version of Windows image. The script
above is intended to be used to create Windows Server 2012 Standard. To build other version of Windows
please use appropriate script from scripts folder.

Clean-up actions to finish image preparation are performed by Start-Sysprep.ps1 script.

Download it from https://raw.github.com/stackforge/murano-deployment/master/image-builder/share/scripts/ws-
2012-std/Start-Sysprep.ps1

These scripts should be copied to the shared resource folder, subfolder Scripts.

Create a VM

This section describes steps required to build an image of Windows Virtual Machine which could be used with Murano.
There are two possible ways to create it - from CLI or using GUI tools. We describe both in this section.

Note

Run all commands as root.

Way 1: Using CLI Tools

This section describes the required step to launch a VM using CLI tools only.

1. Preallocate disk image

># qemu-img create -f raw /var/lib/libvirt/images/ws-2012.img 40G

2. Start the VM

># virt-install --connect qemu:///system --hvm --name WinServ \
--ram 2048 --vcpus 2 --cdrom /opt/samba/share/9200.16384.WIN8_RTM\

.120725-1247_X64FRE_SERVER_EVAL_EN-US-HRM_SSS_X64FREE_EN-US_DV5.ISO \
--disk path=/opt/samba/share/virtio-win-0.1-52.iso,device=cdrom \
--disk path=/opt/samba/share/floppy.img,device=floppy \
--disk path=/var/lib/libvirt/images/ws-2012.qcow2\

,format=qcow2,bus=virtio,cache=none \
--network network=default,model=virtio \
--memballoon model=virtio --vnc --os-type=windows \

1.12. Building Murano Image 79

https://raw.github.com/stackforge/murano-deployment/master/image-builder/share/scripts/ws-2012-std/wpi.ps1
https://raw.github.com/stackforge/murano-deployment/master/image-builder/share/scripts/ws-2012-std/wpi.ps1
https://raw.github.com/stackforge/murano-deployment/master/image-builder/share/scripts/ws-2012-std/Start-Sysprep.ps1
https://raw.github.com/stackforge/murano-deployment/master/image-builder/share/scripts/ws-2012-std/Start-Sysprep.ps1

Murano, Release 2014.2.1

--os-variant=win2k8 --noautoconsole \
--accelerate --noapic --keymap=en-us --video=cirrus --force

Way 2: Using virt-manager UI

A VM also could be lauched via GUI tools like virt-manager.

1. Launch virt-manager from shell as root

2. Set a name for VM and select Local install media

3. Add one cdrom and attach Windows Server ISO image to it

4. Select OS type Windows

5. Set CPU and RAM amount

6. Deselect option Enable storage for this virtual machine

7. Add second cdrom for ISO image with virtio drivers

8. Add a floppy drive and attach our floppy image to it

9. Add (or create new) HDD image with Disk bus VirtIO and storage format RAW

10. Set network device model VirtIO

11. Start installation process and open guest vm screen through Console button

Convert the image from RAW to QCOW2 format.

The image must be converted from RAW format to QCOW2 before being imported into Glance.

># qemu-img convert -O qcow2 /var/lib/libvirt/images/ws-2012.raw \
/var/lib/libvirt/images/ws-2012-ref.qcow2

1.12.2 Linux Image

Create a VM

This section describes steps required to build an image of Linux Virtual Machine which could be used with Murano.
There are two possible ways to create it - from CLI or using GUI tools. We describe both in this section.

Note

Run all commands as root.

Way 1: Using CLI Tools

This section describes the required step to launch a VM using CLI tools only.

1. Preallocate disk image

># qemu-img create -f qcow2 /var/lib/libvirt/images/cloud-linux.img 10G

2. Start the VM

># virt-install --connect qemu:///system --hvm --name cloud-linux \
--ram 2048 --vcpus 2 --cdrom /PATH_TO_YOUR_LINUX.ISO \
--disk path=/var/lib/libvirt/images/cloud-linux.img, \
format=qcow2,bus=virtio,cache=none \
--network network=default,model=virtio \
--memballoon model=virtio --vnc --os-type=linux \
--accelerate --noapic --keymap=en-us --video=cirrus --force

80 Chapter 1. Introduction

Murano, Release 2014.2.1

Way 2: Using virt-manager UI

A VM also could be lauched via GUI tools like virt-manager.

1. Launch virt-manager from shell as root

2. Set a name for VM and select Local install media

3. Add one cdrom and attach your linux ISO image to it

4. Select OS type Linux and it’s version choose yours

5. Set CPU and RAM amount

6. Deselect option Enable storage for this virtual machine

7. Select option Customize configuration before install

8. Add (or create new) HDD image with Disk bus VirtIO and storage format QCOW2

9. Set network device model VirtIO

10. Start installation process and open guest vm screen through Console button

Guest VM Linux OS preparation

Ubuntu 12.04 LTS x86_64

># for action in update upgrade dist-upgrade;do apt-get -y $action;done
># apt-get install -y git unzip make cmake gcc python-dev python-pip openssh-server sudo

CentOS 6.4 x86_64

># rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
># for action in update upgrade;do yum -y $action; done
># yum install -y git unzip make cmake gcc python-devel python-pip openssh-server openssh-clients sudo

murano-agent installation steps

># mkdir -p /opt/git
># cd /opt/git
># git clone https://github.com/stackforge/murano-agent.git
># cd murano-agent/python-agent
># git checkout release-0.5
># chmod a+x setup*.sh

To install Murano Agent on run the following command:
- **Ubuntu**

># ./setup.sh install
- **CentOS**

># ./setup-centos.sh install

cloud-init installation steps

• Ubuntu

># apt-get install -y cloud-init cloud-initramfs-growroot

• CentOS

># yum install -y cloud-init

1.12. Building Murano Image 81

Murano, Release 2014.2.1

Note

Ubuntu only

::

># dpkg-reconfigure cloud-init

Mark **EC2** data source support, save and exit or add manualy

Ec2 to the datasource_list variable in the
/etc/cloud/cloud.cfg.d/90_dfkg.cfg

• Minimal cloud-init configuration options

># vi /etc/cloud/cloud.cfg:
user: ec2-user
disable_root: 1
preserve_hostname: False

Security setup

Create user and make it able to run commands through sudo without password prompt.

• Ubuntu

># useradd -m -G sudo -s /bin/bash ec2-user
># passwd ec2-user

• CentOS

># useradd -m -G wheel -s /bin/bash ec2-user
># passwd ec2-user

• Sudo

># echo "ec2-user ALL=(ALL) NOPASSWD: ALL" > /etc/sudoers.d/ec2-user
># chmod 440 /etc/sudoers.d/ec2-user

Disable SSH password-based logins in the /etc/ssh/sshd_config.
...
GSSAPIAuthentication no
PasswordAuthentication no
PermitRootLogin no
...

</itemizedlist> </para> Network handling

• Ubuntu

># rm -rf /etc/udev/rules.d/70-persistent-net.rules

• CentOS Remove or comment out HWADDR and UUID in /etc/sysconfig/network-scripts/ifcfg-eth*

># rm -rf /etc/udev/rules.d/70-persistent-net.rules

Shutdown VM

Convert the image from RAW to QCOW2 format if you made it as RAW.

The image must be converted from RAW format to QCOW2 before being imorted into Glance.

82 Chapter 1. Introduction

Murano, Release 2014.2.1

># qemu-img convert -O qcow2 /var/lib/libvirt/images/cloud-linux.img \
/var/lib/libvirt/images/cloud-linux.img.qcow2

1.12.3 Upload Image Into Glance

To deploy applications with Murano, virtual machine images should be uploaded into Glance in a special way -
murano_image_info property should be set

1. Use the glance image-create command to import your disk image to Glance:

>$ glance image-create --name <NAME> --is-public true --disk-format qcow2 --container-format bare --file <IMAGE_FILE> --property <IMAGE_METADATA>

Replace the command line arguments to glance image-create with the appropriate values for your environment and
disk image:

• Replace <NAME> with the name that users will refer to the disk image by. E.g. ‘ws-2012-std‘

• Replace <IMAGE_FILE> with the local path to the image file to upload. E.g. ‘ws-2012-std.qcow2‘.

• Replace <IMAGE_METADATA> with the following property string

murano_image_info=’{"title": "Windows 2012 Standart Edition", "type": "windows.2012"}’

where

– title - user-friendly description of the image

– type - is a image type, for example ‘windows.2012’

2. To update metadata of the existing image run the command:

>$ glance image-update <IMAGE-ID> --property <IMAGE_MATADATA>

• Replace <IMAGE-ID> with image id from the previous command output.

• Replace <IMAGE_METADATA> with murano_image_info property, e.g.

murano_image_info=’{"title": "Windows 2012 Standart Edition", "type": "windows.2012"}’

Warning

The value of the –property argument named murano_image_info is a JSON string. Only double quotes
are valid in JSON, so please type the string exactly as in the example above.

Note

Already existing image could be marked in a simple way in Horizon UI with Murano dashboard installed. Navigate to
Murano -> Manage -> Images -> Mark Image and fill up a form:

• Image - ws-2012-std

• Title - My Prepared Image

• Type - Windows Server 2012

After these steps desired image can be chosen in application creation wizard.

1.13 Murano Automated Tests Description

This page describes automated tests for a Murano project:

1.13. Murano Automated Tests Description 83

Murano, Release 2014.2.1

• where tests are located

• how they are run

• how execute tests on a local machine

• how to find the the root of problems with FAILed tests

1.13.1 Murano Continuous Integration Service

Murano project has separate CI server, which runs tests for all commits and verifies that new code does not break
anything.

Murano CI uses OpenStack QA cloud for testing infrastructure.

Murano CI url: https://murano-ci.mirantis.com/jenkins/ Anyone can login to that server, using launchpad credentials.

There you can find each job for each repository: one for the murano and another one for murano-dashboard.

• “gate-murano-dashboard-selenium*” verifies each commit to murano-dashboard repository

• “gate-murano-integration*” verifies each commit to murano repository

Other jobs allow to build and test Murano documentation and perform another usefull work to support Murano CI
infrastructure. All jobs are run on fresh installation of operation system and all components are installed on each run.

1.13.2 Murano Automated Tests: UI Tests

Murano project has a Web User Interface and all possible user scenarios should be tested. All UI tests are located at
the https://git.openstack.org/cgit/stackforge/murano-dashboard/tree/muranodashboard/tests/functional

Automated tests for Murano Web UI are written in Python using special Selenium library. This library is
used to automate web browser interaction from Python. For more information please visit https://selenium-
python.readthedocs.org/

Prerequisites:

• Install Python module, called nose performing one of the following commands easy_install nose or pip install
nose This will install the nose libraries, as well as the nosetests script, which you can use to automatically
discover and run tests.

• Install external Python libraries, which are required for Murano Web UI tests: testtools and selenium

Download and run tests:

First of all make sure that all additional components are installed.

• Clone murano-dashboard git repository:

– git clone git://git.openstack.org/stackforge/murano-dashboard*

• Change default settings:

– Copy muranodashboard/tests/functional/config/config.conf.example to config.conf

– Set appropriate urls and credentials for your OpenStack lab. Only admin users are appropriate.

84 Chapter 1. Introduction

https://murano-ci.mirantis.com/jenkins/
https://git.openstack.org/cgit/stackforge/murano-dashboard/tree/muranodashboard/tests/functional
https://selenium-python.readthedocs.org/
https://selenium-python.readthedocs.org/

Murano, Release 2014.2.1

[murano]

horizon_url = http://localhost/horizon
murano_url = http://localhost:8082
user = ***
password = ***
tenant = ***
keystone_url = http://localhost:5000/v2.0/

All tests are kept in sanity_check.py and divided into 5 test suites:

• TestSuiteSmoke - verification of Murano panels; check, that could be open without errors.

• TestSuiteEnvironment - verification of all operations with environment are finished successfully.

• TestSuiteImage - verification of operations with images.

• TestSuiteFields - verification of custom fields validators.

• TestSuitePackages - verification of operations with Murano packages.

• TestSuiteApplications - verification of Application Catalog page and of application creation process.

To specify which tests/suite to run, pass test/suite names on the command line:

• to run all tests: nosetests sanity_check.p

• to run a single suite: nosetests sanity_check.py:<test suite name>

• to run a single test: nosetests sanity_check.py:<test suite name>.<test name>

In case of SUCCESS execution, you should see something like this:
.........................

Ran 34 tests in 1.440s

OK

In case of FAILURE, folder with screenshots of the last operation of tests that finished with errors would be created.
It’s located in muranodashboard/tests/functional folder.

There are also a number of command line options that can be used to control the test execution and generated outputs.
For more details about nosetests, try:

$ nosetests -h

1.13.3 Murano Automated Tests: Tempest Tests

All Murano services have tempest-based automated tests, which allow to verify API interfaces and deployment sce-
narious.

Tempest tests for Murano are located at the: https://git.openstack.org/cgit/stackforge/murano/tree/murano/tests/functional

The following Python files are contain basic tests suites for different Murano components.

API Tests

Murano API tests are run on devstack gate and located at https://git.openstack.org/cgit/stackforge/murano/tree/murano/tests/functional/api

• test_murano_envs.py contains test suite with actions on murano’s environments(create, delete, get and etc.)

1.13. Murano Automated Tests Description 85

https://git.openstack.org/cgit/stackforge/murano/tree/murano/tests/functional
https://git.openstack.org/cgit/stackforge/murano/tree/murano/tests/functional/api

Murano, Release 2014.2.1

• test_murano_sessions.py contains test suite with actions on murano’s sessions(create, delete, get and etc.)

• test_murano_services.py contains test suite with actions on murano’s services(create, delete, get and etc.)

• test_murano_repository.py contains test suite with actions on murano’s package repository

Engine Tests

Murano Engine Tests are run on murano-ci : https://git.openstack.org/cgit/stackforge/murano/tree/murano/tests/functional/engine

• base.py contains base test class and tests with actions on deploy Murano services such as ‘Telnet’ and ‘Apache’.

Command Line Tests

Murano CLI tests case are currently in the middle of creation. The current scope is read only operations on a cloud
that are hard to test via unit tests.

All tests have description and execution steps in there docstrings.

Guidelines

1.14 Contributing to Murano

If you’re interested in contributing to the Murano project, the following will help get you started.

1.14.1 Contributor License Agreement

In order to contribute to the Murano project, you need to have signed OpenStack’s contributor’s agreement:

• http://wiki.openstack.org/HowToContribute

• http://wiki.openstack.org/CLA

1.14.2 Project Hosting Details

• Bug tracker https://launchpad.net/murano

• Mailing list (prefix subjects with [Murano] for faster responses) http://lists.openstack.org/cgi-
bin/mailman/listinfo/openstack-dev

• Wiki https://wiki.openstack.org/wiki/Murano

• IRC channel

– #murano at FreeNode

– https://wiki.openstack.org/wiki/Meetings#Murano_meeting

• Code Hosting

– https://git.openstack.org/cgit/stackforge/murano

– https://git.openstack.org/cgit/stackforge/murano-agent

– https://git.openstack.org/cgit/stackforge/murano-dashboard

– https://git.openstack.org/cgit/stackforge/python-muranoclient

86 Chapter 1. Introduction

https://git.openstack.org/cgit/stackforge/murano/tree/murano/tests/functional/engine
http://wiki.openstack.org/HowToContribute
http://wiki.openstack.org/CLA
https://launchpad.net/murano
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
https://wiki.openstack.org/wiki/Murano
https://wiki.openstack.org/wiki/Meetings#Murano_meeting
https://git.openstack.org/cgit/stackforge/murano
https://git.openstack.org/cgit/stackforge/murano-agent
https://git.openstack.org/cgit/stackforge/murano-dashboard
https://git.openstack.org/cgit/stackforge/python-muranoclient

Murano, Release 2014.2.1

• Code Review

– https://review.openstack.org/#/q/murano+AND+status:+open,n,z

– https://wiki.openstack.org/wiki/GerritWorkflow

1.15 Development Guidelines

1.15.1 Coding Guidelines

For all the code in Murano we have a rule - it should pass PEP 8.

To check your code against PEP 8 run:

$ tox -e pep8

See also:

• https://pep8.readthedocs.org/en/latest/

• https://flake8.readthedocs.org

• http://docs.openstack.org/developer/hacking/

1.15.2 Testing Guidelines

Murano has a suite of tests that are run on all submitted code, and it is recommended that developers execute the tests
themselves to catch regressions early. Developers are also expected to keep the test suite up-to-date with any submitted
code changes.

Unit tests are located at muranoapi/tests.

Murano’s suite of unit tests can be executed in an isolated environment with Tox. To execute the unit tests run the
following from the root of Murano repo on Python 2.7:

$ tox -e py27

For Python 2.6:

$ tox -e py26

1.15.3 Documentation Guidelines

Murano dev-docs are written using Sphinx / RST and located in the main repo in doc directory.

The documentation in docstrings should follow the PEP 257 conventions (as mentioned in the PEP 8 guidelines).

More specifically:

1. Triple quotes should be used for all docstrings.

2. If the docstring is simple and fits on one line, then just use one line.

3. For docstrings that take multiple lines, there should be a newline after the opening quotes, and before the closing
quotes.

4. Sphinx is used to build documentation, so use the restructured text markup to designate parameters, return
values, etc. Documentation on the sphinx specific markup can be found here:

1.15. Development Guidelines 87

https://review.openstack.org/#/q/murano+AND+status:+open,n,z
https://wiki.openstack.org/wiki/GerritWorkflow
http://www.python.org/dev/peps/pep-0008/
https://pep8.readthedocs.org/en/latest/
https://flake8.readthedocs.org
http://docs.openstack.org/developer/hacking/
http://tox.testrun.org/
http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0008/
http://sphinx.pocoo.org/markup/index.html

Murano, Release 2014.2.1

Run the following command to build docs locally.

$ tox -e docs

API specification

1.16 Murano API v1 specification

1.16.1 General information

• Introduction

Murano Service API is a programmatic interface used for interaction with Murano. Other interac-
tion mechanisms like Murano Dashboard or Murano CLI should use API as underlying protocol for
interaction. * Allowed HTTPs requests

– POST : To create a resource

– GET : Get a resource or list of resources

– DELETE : To delete resource

– PATCH : To update a resource

• Description Of Usual Server Responses

– 200 OK - the request was successful.

– 201 Created - the request was successful and a resource was created.

– 204 No Content - the request was successful but there is no representation to return (i.e. the response
is empty).

– 400 Bad Request - the request could not be understood or required parameters were missing.

– 401 Unauthorized - authentication failed or user didn’t have permissions for requested operation.

– 403 Forbidden - access denied.

– 404 Not Found - resource was not found

– 405 Method Not Allowed - requested method is not supported for resource.

• Response of POSTs and PUTs

All POST and PUT requests by convention should return the created object (in the case of POST,
with a generated ID) as if it was requested by GET.

• Authentication

All requests include a Keystone authentication token header (X-Auth-Token). Clients must authenti-
cate with Keystone before interacting with the Murano service.

1.16.2 Glossary

• Environment

Environment is a set of applications managed by a single tenant. They could be related logically with
each other or not. Applications within single Environment may comprise some complex configura-
tion while applications in different Environments are always independent from one another. Each
Environment is associated with single OpenStack project (tenant).

88 Chapter 1. Introduction

Murano, Release 2014.2.1

• Session

Since Murano environment are available for local modification for different users and from different
locations, it’s needed to store local modifications somewhere. So sessions were created to provide
this opportunity. After user adds application to the environment - new session is created. After user
sends environment to deploy, session with set of applications changes status to deploying and all
other open sessions for that environment becomes invalid. One session could be deployed only once.

• Object Model

Applications are defined in MuranoPL object model, which is defined as JSON object. Murano API
doesn’t know anything about it.

• Package

A .zip archive, containing instructions for an application deployment.

Environment API

Attribute Type Description
id string Unique ID
name string User-friendly name
created datetime Creation date and time in ISO format
updated datetime Modification date and time in ISO format
tenant_id string OpenStack tenant ID
version int Current version
networking string Network settings
status string Deployment status: ready, pending, deploying

Common response codes

Code Description
200 Operation completed successfully
401 User is not authorized to perform the operation

1.16.3 List Environments

Method URI Description
GET /environments Get a list of existing Environments

This call returns list of environments. Only the basic properties are returned.

{
"environments": [

{
"status": "ready",
"updated": "2014-05-14T13:02:54",
"networking": {},
"name": "test1",
"created": "2014-05-14T13:02:46",
"tenant_id": "726ed856965f43cc8e565bc991fa76c3",
"version": 0,
"id": "2fa5ab704749444bbeafe7991b412c33"

},
{

"status": "ready",
"updated": "2014-05-14T13:02:55",

1.16. Murano API v1 specification 89

Murano, Release 2014.2.1

"networking": {},
"name": "test2",
"created": "2014-05-14T13:02:51",
"tenant_id": "726ed856965f43cc8e565bc991fa76c3",
"version": 0,
"id": "744e44812da84e858946f5d817de4f72"

}
]

}

1.16.4 Create Environment

Attribute Type Description
name string Environment name; only alphanumeric characters and ‘-‘

Method URI Description
POST /environments Create new Environment

• Content-Type application/json

• Example {“name”: “env_name”}

{
"id": "ce373a477f211e187a55404a662f968",
"name": "env_name",
"created": "2013-11-30T03:23:42Z",
"updated": "2013-11-30T03:23:44Z",
"tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
"version": 0

}

1.16.5 Update Environment

Attribute Type Description
name string Environment name; only alphanumeric characters and ‘-‘

Method URI Description
PUT /environments/<env_id> Update an existing Environment

• Content-Type application/json

• Example {“name”: “env_name_changed”}

Content-Type application/json

{
"id": "ce373a477f211e187a55404a662f968",
"name": "env_name_changed",
"created": "2013-11-30T03:23:42Z",
"updated": "2013-11-30T03:45:54Z",
"tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
"version": 0

}

90 Chapter 1. Introduction

Murano, Release 2014.2.1

1.16.6 Get Environment Details

Return information about environment itself and about applications, including to this environment.

Method URI Header Description
GET /environ-

ments/{id}
X-Configuration-Session
(optional)

Response detailed information about Environment
including child entities

Content-Type application/json

{
"status": "ready",
"updated": "2014-05-14T13:12:26",
"networking": {},
"name": "quick-env-2",
"created": "2014-05-14T13:09:55",
"tenant_id": "726ed856965f43cc8e565bc991fa76c3",
"version": 1,
"services": [

{
"instance": {

"flavor": "m1.medium",
"image": "cloud-fedora-v3",
"name": "exgchhv6nbika2",
"ipAddresses": [

"10.0.0.200"
],
"?": {

"type": "io.murano.resources.Instance",
"id": "14cce9d9-aaa1-4f09-84a9-c4bb859edaff"

}
},
"name": "rewt4w56",
"?": {

"status": "ready",
"_26411a1861294160833743e45d0eaad9": {

"name": "Telnet"
},
"type": "io.murano.apps.linux.Telnet",
"id": "446373ef-03b5-4925-b095-6c56568fa518"

}
}

],
"id": "20d4a012628e4073b48490a336a8acbf"

}

1.16.7 Delete Environment

Method URI Description
DELETE /environments/{id} Remove specified Environment.

Environment Configuration API

Multiple sessions could be opened for one environment simultaneously, but only one session going to be deployed.
First session that starts deploying is going to be deployed; other ones become invalid and could not be deployed at

1.16. Murano API v1 specification 91

Murano, Release 2014.2.1

all. User could not open new session for environment that in deploying state (that’s why we call it “almost lock free”
model).

Attribute Type Description
id string Session unique ID
environment_id string Environment that going to be modified during this session
created datetime Creation date and time in ISO format
updated datetime Modification date and time in ISO format
user_id string Session owner ID
version int Environment version for which configuration session is opened
state string Session state. Could be: open, deploying, deployed

1.16.8 Configure Environment / Open session

During this call new working session is created, and session ID should be sent in a request header with name
X-Configuration-Session.

Method URI Description
POST /environments/<env_id>/configure Creating new configuration session

Content-Type application/json

{
"updated": datetime.datetime(2014, 5, 14, 14, 17, 58, 949358),
"environment_id": "744e44812da84e858946f5d817de4f72",
"ser_id": "4e91d06270c54290b9dbdf859356d3b3",
"created": datetime.datetime(2014, 5, 14, 14, 17, 58, 949305),
"state": "open", "version": 0L, "id": "257bef44a9d848daa5b2563779714820"

}

Code Description
200 Session created successfully
401 User is not authorized to access this session
403 Could not open session for environment, environment has deploying status

1.16.9 Deploy Session

With this request all local changes made within environment start to deploy on Openstack.

Method URI Description
POST /environments/<env_id>/sessions/

<session_id>/deploy Deploy changes made in session
with specified session_id

Code Description
200 Session status changes to deploying
401 User is not authorized to access this session
403 Session is already deployed or deployment is in progress

1.16.10 Get Session Details

Method URI Description
GET /environments/<env_id>/sessions/ <session_id> Get details about session with specified session_id

92 Chapter 1. Introduction

Murano, Release 2014.2.1

{
"id": "4aecdc2178b9430cbbb8db44fb7ac384",
"environment_id": "4dc8a2e8986fa8fa5bf24dc8a2e8986fa8",
"created": "2013-11-30T03:23:42Z",
"updated": "2013-11-30T03:23:54Z",
"user_id": "d7b501094caf4daab08469663a9e1a2b",
"version": 0,
"state": "deploying"

}

Code Description
200 Session details information received
401 User is not authorized to access this session
403 Session is invalid

1.16.11 Delete Session

Method URI Description
DELETE /environments/<env_id>/sessions/ <session_id> Delete session with specified session_id

Code Description
200 Session is deleted successfully
401 User is not authorized to access this session
403 Session is in deploying state and could not be deleted

Environment Deployments API

Environment deployment API allows to track changes of environment status, deployment events and errors. It also
allows to browse deployment history.

1.16.12 List Deployments

Returns information about all deployments of the specified environment.

Method URI Description
GET /environments/<env_id>/deployments Get list of environment deployments

Content-Type application/json

{
"deployments": [

{
"updated": "2014-05-15T07:24:21",
"environment_id": "744e44812da84e858946f5d817de4f72",
"description": {

"services": [
{

"instance": {
"flavor": "m1.medium",
"image": "cloud-fedora-v3",
"?": {

"type": "io.murano.resources.Instance",
"id": "ef729199-c71e-4a4c-a314-0340e279add8"

},
"name": "xkaduhv7qeg4m7"

1.16. Murano API v1 specification 93

Murano, Release 2014.2.1

},
"name": "teslnet1",
"?": {

"_26411a1861294160833743e45d0eaad9": {
"name": "Telnet"

},
"type": "io.murano.apps.linux.Telnet",
"id": "6e437be2-b5bc-4263-8814-6fd57d6ddbd5"

}
}

],
"defaultNetworks": {

"environment": {
"name": "test2-network",
"?": {

"type": "io.murano.lib.networks.neutron.NewNetwork",
"id": "b6a1d515434047d5b4678a803646d556"

}
},
"flat": null

},
"name": "test2",
"?": {

"type": "io.murano.Environment",
"id": "744e44812da84e858946f5d817de4f72"

}
},
"created": "2014-05-15T07:24:21",
"started": "2014-05-15T07:24:21",
"finished": null,
"state": "running",
"id": "327c81e0e34a4c93ad9b9052ef42b752"

}
]

}

Code Description
200 Deployments information received successfully
401 User is not authorized to access this environment

Application Management API

All applications should be created within an environment and all environment modifications are held within the session.
Local changes apply only after successful deployment of an environment session.

1.16.13 Get Application Details

Using GET requests to applications endpoint user works with list containing all applications for specified envi-
ronment. User can request whole list, specific application, or specific attribute of specific application using tree
traversing. To request specific application, user should add to endpoint part an application id, e.g.: /environ-
ments/<env_id>/services/<application_id>. For selection of specific attribute on application, simply appending part
with attribute name will work. For example to request application name, user should use next endpoint: /environ-
ments/<env_id>/services/<application_id>/name

Method URI Header
GET /environments/<env_id>/services<app_id> X-Configuration-Session (optional)

94 Chapter 1. Introduction

Murano, Release 2014.2.1

Parameters:

• env_id - environment ID, required

• app_id - application ID, optional

Content-Type application/json

{
"instance": {

"flavor": "m1.medium",
"image": "cloud-fedora-v3",
"?": {

"type": "io.murano.resources.Instance",
"id": "060715ff-7908-4982-904b-3b2077ff55ef"

},
"name": "hbhmyhv6qihln3"

},
"name": "dfg34",
"?": {

"status": "pending",
"_26411a1861294160833743e45d0eaad9": {

"name": "Telnet"
},
"type": "io.murano.apps.linux.Telnet",
"id": "6e7b8ad5-888d-4c5a-a498-076d092a7eff"

}
}

1.16.14 POST applications

New application can be added to the Murano environment using session. Result JSON is calculated in Murano dash-
board, which based on UI definition

Content-Type application/json

Method URI Header
POST /environments/<env_id>/services X-Configuration-Session

{
"instance": {
"flavor": "m1.medium",
"image": "clod-fedora-v3",
"?": {

"type": "io.murano.resources.Instance",
"id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"

},
"name": "nhekhv6r7mhd4"

},
"name": "sdf34sadf",
"?": {
"_26411a1861294160833743e45d0eaad9": {

"name": "Telnet"
},
"type": "io.murano.apps.linux.Telnet",
"id": "190c8705-5784-4782-83d7-0ab55a1449aa"

}
}

Created application returned

1.16. Murano API v1 specification 95

Murano, Release 2014.2.1

Content-Type application/json

{
"instance": {

"flavor": "m1.medium",
"image": "cloud-fedora-v3",
"?": {

"type": "io.murano.resources.Instance",
"id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"

},
"name": "nhekhv6r7mhd4"

},
"name": "sdf34sadf",
"?": {

"_26411a1861294160833743e45d0eaad9": {
"name": "Telnet"

},
"type": "io.murano.apps.linux.Telnet",
"id": "190c8705-5784-4782-83d7-0ab55a1449a1"

}
}

1.16.15 Delete application from environment

Delete one or all applications from the environment

Method URI Header
DELETE /environments/<env_id>/services/<app_id> X-Configuration-Session(optional)

Parameters:

• env_id - environment ID, required

• app_id - application ID, optional

Statistic API

Statistic API intends to provide billing feature

1.16.16 Instance Environment Statistics

Get information about all deployed instances in the specified environment

Method URI
GET /environments/<env_id>/instance-statistics/raw/<instance_id>

Parameters:

• env_id - environment ID, required

• instance_id - ID of the instance for which need to provide statistic information, optional

96 Chapter 1. Introduction

Murano, Release 2014.2.1

Attribute Type Description
type int Code of the statistic object; 200 - instance, 100 - application
type_name string Class name of the statistic object
instance_id string Id of deployed instance
active bool Instance status
type_title string User-friendly name for browsing statistic in UI
duration int Seconds of instance uptime

Content-Type application/json

[
{

"type": 200,
"type_name": "io.murano.resources.Instance",
"instance_id": "ef729199-c71e-4a4c-a314-0340e279add8",
"active": true,
"type_title": null,
"duration": 1053,

}
]

Method URI
GET /environments/<env_id>/instance-statistics/aggregated

Attribute Type Description
type int Code of the statistic object; 200 - instance, 100 - application
duration int Amount uptime of specified type objects
count int Quantity of specified type objects

Content-Type

application/json

[
{

"duration": 720,
"count": 2,
"type": 200

}
]

1.16.17 General Request Statistics

Method URI
GET /stats

Attribute Type Description
requests_per_tenant int Number of incoming requests for user tenant
errors_per_second int Class name of the statistic object
errors_count int Class name of the statistic object
requests_per_second float Average number of incoming request received in one second
requests_count int Number of all requests sent to the server
cpu_percent bool Current cpu usage
cpu_count int Available cpu power is cpu_count * 100%
host string Server host-name
average_response_time float Average time response waiting, seconds

Content-Type application/json

1.16. Murano API v1 specification 97

Murano, Release 2014.2.1

[
{

"updated": "2014-05-15T08:26:17",
"requests_per_tenant": "{\"726ed856965f43cc8e565bc991fa76c3\": 313}",
"created": "2014-04-29T13:23:59",
"cpu_count": 2,
"errors_per_second": 0,
"requests_per_second": 0.0266528,
"cpu_percent": 21.7,
"host": "fervent-VirtualBox",
"error_count": 0,
"request_count": 320,
"id": 1,
"average_response_time": 0.55942

}
]

Application Catalog API

Manage application definitions in the Application Catalog. You can browse, edit and upload new application packages
(.zip.package archive with all data that required for a service deployment).

1.16.18 Packages

Methods for application package management

Package Properties

• id: guid of a package (fully_qualified_name can also be used for some API functions)

• fully_qualified_name: fully qualified domain name - domain name that specifies exact application lo-
cation

• name: user-friendly name

• type: package type, “library” or “application”

• description: text information about application

• author: name of application author

• tags: list of short names, connected with the package, which allows to search applications easily

• categories: list of application categories

• class_definition: list of class names used by a package

• is_public: determines whether the package is shared for other tenants

• enabled: determines whether the package is browsed in the Application Catalog

• owner_id: id of a tenant which user not an owned the package

/v1/catalog/packages?{marker}{limit}{order_by}{type}{category}{fqn}{owned}{class_name} [GET]

This is the compound request to list and search through application catalog. If there are no search parameters all
packages that is_public, enabled and belong to the user’s tenant will be listed. Default order is by ‘created’ field. For
an admin role all packages are available.

Parameters

98 Chapter 1. Introduction

Murano, Release 2014.2.1

Attribute Type Description
marker string A package identifier marker may be specified. When present only packages which occur

after the identifier ID will be listed
limit string When present the maximum number of results returned will not exceed the specified value.

The typical pattern of limit and marker is to make an initial limited request and then to use
the ID of the last package from the response as the marker parameter in a subsequent
limited request.

order_by string Allows to sort packages by: fqn, name, created. Created is default value.
type string Allows to point a type of package: application, library
category string Allows to point a categories for a search
fqn string Allows to point a fully qualified package name for a search
owned bool Search only from packages owned by user tenant
include_disabledbool Include disabled packages in a the result
search string Gives opportunity to search specified data by all the package parameters
class_name string Search only for packages, that use specified class

Response 200 (application/json)

{"packages": [
{
"id": "fed57567c9fa42c192dcbe0566f8ea33",
"fully_qualified_name" : "com.example.murano.services.linux.telnet",
"is_public": false,
"name": "Telnet",
"type": "linux",
"description": "Installs Telnet service",
"author": "Openstack, Inc.",
"created": "2014-04-02T14:31:55",
"enabled": true,
"tags": ["linux", "telnet"],
"categories": ["Utility"],
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

},
{
"id": "fed57567c9fa42c192dcbe0566f8ea31",
"fully_qualified_name": "com.example.murano.services.windows.WebServer",
"is_public": true,
"name": "Internet Information Services",
"type": "windows",
"description": "The Internet Information Service sets up an IIS server and joins it into an existing domain",
"author": "Openstack, Inc.",
"created": "2014-04-02T14:31:55",
"enabled": true,
"tags": ["windows", "web"],
"categories": ["Web"],
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

}]
}

/v1/catalog/packages

See the example of multipart/form-data request, It should contain two parts - text (json string) and file object

Request (multipart/form-data)

Content-type: multipart/form-data, boundary=AaB03x
Content-Length: $requestlen

--AaB03x

1.16. Murano API v1 specification 99

Murano, Release 2014.2.1

content-disposition: form-data; name="submit-name"

--AaB03x
Content-Disposition: form-data; name="JsonString"
Content-Type: application/json

{"categories":["web"] , "tags": ["windows"], "is_public": false, "enabled": false}
‘categories‘ - array, required
‘tags‘ - array, optional
‘name‘ - string, optional
‘description‘ - string, optional
‘is_public‘ - bool, optional
‘enabled‘ - bool, optional

--AaB03x
content-disposition: file; name="file"; filename="test.tar"
Content-Type: targz
Content-Transfer-Encoding: binary

$binarydata
--AaB03x--

Response 200 (application/json)

{
"updated": "2014-04-03T13:00:13",
"description": "A domain service hosted in Windows environment by using Active Directory Role",
"tags": ["windows"],
"is_public": true,
"id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
"categories": ["test1"],
"name": "Active Directory",
"author": "Mirantis, Inc",
"created": "2014-04-03T13:00:13",
"enabled": true,
"class_definition": [

"com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"com.mirantis.murano.windows.activeDirectory.SecondaryController",
"com.mirantis.murano.windows.activeDirectory.Controller",
"com.mirantis.murano.windows.activeDirectory.PrimaryController"

],
"fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"type": "Application",
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

}

/v1/catalog/packages/{id} [GET]

Display details for a package.

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/json)

{
"updated": "2014-04-03T13:00:13",
"description": "A domain service hosted in Windows environment by using Active Directory Role",
"tags": ["windows"],

100 Chapter 1. Introduction

Murano, Release 2014.2.1

"is_public": true,
"id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
"categories": ["test1"],
"name": "Active Directory",
"author": "Mirantis, Inc",
"created": "2014-04-03T13:00:13",
"enabled": true,
"class_definition": [

"com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"com.mirantis.murano.windows.activeDirectory.SecondaryController",
"com.mirantis.murano.windows.activeDirectory.Controller",
"com.mirantis.murano.windows.activeDirectory.PrimaryController"

],
"fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"type": "Application",
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

}

Response 403

• In attempt to get non-public package by user whose tenant is not an owner of this package.

Response 404

• In case specified package id doesn’t exist.

/v1/catalog/packages/{id} [PATCH]

Allows to edit mutable fields (categories, tags, name, description, is_public, enabled). See the full specification here.

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Allowed operations:

[
{ "op": "add", "path": "/tags", "value": ["foo", "bar"] },
{ "op": "add", "path": "/categories", "value": ["foo", "bar"] },
{ "op": "remove", "path": "/tags", ["foo"] },
{ "op": "remove", "path": "/categories", ["foo"] },
{ "op": "replace", "path": "/tags", "value": [] },
{ "op": "replace", "path": "/categories", "value": ["bar"] },
{ "op": "replace", "path": "/is_public", "value": true },
{ "op": "replace", "path": "/enabled", "value": true },
{ "op": "replace", "path": "/description", "value":"New description" },
{ "op": "replace", "path": "/name", "value": "New name" }

]

Request 200 (application/murano-packages-json-patch)

[
{ "op": "add", "path": "/tags", "value": ["windows", "directory"] },
{ "op": "add", "path": "/categories", "value": ["Directory"] }

]

Response 200 (application/json)

{
"updated": "2014-04-03T13:00:13",
"description": "A domain service hosted in Windows environment by using Active Directory Role",
"tags": ["windows", "directory"],

1.16. Murano API v1 specification 101

http://tools.ietf.org/html/rfc6902

Murano, Release 2014.2.1

"is_public": true,
"id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
"categories": ["test1"],
"name": "Active Directory",
"author": "Mirantis, Inc",
"created": "2014-04-03T13:00:13",
"enabled": true,
"class_definition": [

"com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"com.mirantis.murano.windows.activeDirectory.SecondaryController",
"com.mirantis.murano.windows.activeDirectory.Controller",
"com.mirantis.murano.windows.activeDirectory.PrimaryController"

],
"fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"type": "Application",
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

}

Response 403

• An attempt to update immutable fields

• An attempt to perform operation that is not allowed on the specified path

• An attempt to update non-public package by user whose tenant is not an owner of this package

Response 404

• An attempt to update package that doesn’t exist

/v1/catalog/packages/{id} [DELETE]

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package to delete

Response 404

• An attempt to delete package that doesn’t exist

1.16.19 Download application data

/v1/catalog/packages/{id}/download [GET]

Get application definition package

Parameters

• id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octetstream)

The sequence of bytes representing package content

Response 404

Specified package id doesn’t exist

/v1/catalog/packages/{id}/ui [GET]

Retrieve UI definition for a application which described in a package with provided id

Parameters

• id (required) Hexadecimal id (or fully qualified name) of the package

102 Chapter 1. Introduction

Murano, Release 2014.2.1

Response 200 (application/octet-stream)

The sequence of bytes representing UI definition

Response 404

Specified package id doesn’t exist

Response 403

Specified package is not public and not owned by user tenant, performing the request

Response 404

• Specified package id doesn’t exist

Retrieve application logo which described in a package with provided id

/v1/catalog/packages/{id}/logo [GET]

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing application logo

Response 403

Specified package is not public and not owned by user tenant, performing the request

Response 404

Specified package is not public and not owned by user tenant, performing the request

1.16.20 Categories

/v1/catalog/packages/categories [GET]

Retrieve list of all available application categories

Response 200 (application/json)

{
"categories": ["Web service", "Directory", "Database", "Storage"]

}

1.16. Murano API v1 specification 103

Murano, Release 2014.2.1

104 Chapter 1. Introduction

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

105

	Introduction
	Murano Installation Guide
	Prepare A Lab For Murano
	Installing and Running the Development Version
	Installing and Running Manually
	MuranoPL: Murano Programming Language
	Murano PL System Class Definitions
	MuranoPL Core Library
	Dynamic UI Definition specification
	Murano workflow
	Composing application package manual
	Uploading HOT templates to the Application Catalog
	Building Murano Image
	Murano Automated Tests Description
	Contributing to Murano
	Development Guidelines
	Murano API v1 specification

	Indices and tables

