

 Navigation

 	
 index

 	
 next |

 	Murano

Welcome to Murano!

Introduction

Murano Project introduces an application catalog, which allows application
developers and cloud administrators to publish various cloud-ready applications
in a browsable categorised catalog. It may be used by the cloud users
(including the unexperienced ones) to pick-up the needed applications and
services and composes the reliable environments out of them in a
“push-the-button” manner.

Key goal is to provide UI and API which allows to compose and deploy composite
environments on the Application abstraction level and then manage their
lifecycle.

	Murano consists of several source code repositories:

	
	murano [https://git.openstack.org/cgit/openstack/murano/] - is the main repository. It contains code for Murano API
server, Murano engine and MuranoPL

	murano-agent [https://git.openstack.org/cgit/openstack/murano-agent/] - agent which runs on guest VMs and executes deployment
plan

	murano-dashboard [https://git.openstack.org/cgit/openstack/murano-dashboard/] - Murano UI implemented as a plugin for OpenStack
Dashboard

	python-muranoclient [https://git.openstack.org/cgit/openstack/python-muranoclient/] - Client library and CLI client for Murano

This documentation offers information on how Murano works and how to
contribute to the project.

Installation

	Murano Installation Guide

	Prepare A Lab For Murano

	Installing and Running the Development Version

	Installing and Running Manually

Background Concepts for Murano

	MuranoPL: Murano Programming Language

	Dynamic UI Definition specification

	Murano workflow

	Murano Policy Enforcement

Tutorials

	Composing application package manual

	Uploading HOT templates to the Application Catalog

	Building Murano Image

	Murano Automated Tests Description

Client

	Murano client

Repository

	Murano package repository

Guidelines

	Contributing to Murano
	Contributor License Agreement

	Project Hosting Details

	Development Guidelines
	Coding Guidelines

	Testing Guidelines

	Documentation Guidelines

	Murano TroubleShooting and Debug Tips
	Problems during configuration

	Problems during deployment

	Migrating applications from Murano v0.5 to Stable/Juno
	Rename ‘Workflow’ to ‘Methods’

	Change the Instance type in the UI definition ‘Application’ section

API specification

	Murano API v1 specification

Indices and tables

	Index

	Module Index

	Search Page

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano Installation Guide

Content

	Prepare A Lab For Murano
	System prerequisites

	Lab Requirements

	Test Your Lab Host Performance

	Baseline Data

	Host Optimizations

	Installing and Running the Development Version

	Installing and Running Manually
	Prepare Environment

	Install the API service and Engine

	Install Murano Dashboard

	Import Murano Applications

	SSL configuration
	HTTPS for Murano API

	SSL for RabbitMQ

	SSL for Murano Dashboard

Prepare A Lab For Murano

This section provides basic information about lab’s system requirements.
It also contains a description of a test which you may use to check if
your hardware fits the requirements. To do this, run the test and
compare the results with baseline data provided.

System prerequisites

Supported Operation Systems

	Ubuntu Server 12.04 LTS

	RHEL/CentOS 6.4

System packages are required for Murano

Ubuntu

	gcc

	python-pip

	python-dev

	libxml2-dev

	libxslt-dev

	libffi-dev

	libmysqlclient-dev

	libpq-dev

	python-openssl

	mysql-client

	python-mysqldb

CentOS

	gcc

	python-pip

	python-devel

	libxml2-devel

	libxslt-devel

	libffi-devel

	postgresql-devel

	pyOpenSSL

	mysql

	MySQL-python

Lab Requirements

	Criteria
	Minimal
	Recommended

	CPU
	4 core @ 2.4 GHz
	24 core @ 2.67 GHz

	RAM
	8 GB
	24 GB or more

	HDD
	2 x 500 GB (7200 rpm)
	4 x 500 GB (7200 rpm

	RAID
	Software RAID-1 (use mdadm as
it will improve read
performance almost two times)
	Hardware RAID-10

Table: Hardware requirements

There are a few possible storage configurations except the shown above.
All of them were tested and were working well.

	1x SSD 500+ GB

	
	1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto

	the HDD and mount the SSD drive to folder where VM images are)

	1x HDD (15000 rpm) 500+ GB

Test Your Lab Host Performance

We have measured time required to boot 1 to 5 instances of Windows
system simultaneously. You can use this data as the baseline to check if
your system is fast enough.

You should use sysprepped images for this test, to simulate VM first
boot.

Steps to reproduce test:

	Prepare Windows 2012 Standard (with GUI) image in QCOW2 format. Let’s
assume that its name is ws-2012-std.qcow2

	Ensure that there is NO KVM PROCESSES on the host. To do this, run
command:

># ps aux | grep kvm

	Make 5 copies of Windows image file:

># for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

	Create script start-vm.sh in the folder with .qcow2 files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm -m 1024 -drive file=ws-2012-std-$i.qcow2,if=virtio -net user -net nic,model=virtio -nographic -usbdevice tablet -vnc :$i & done

	Start ONE instance with command below (as root) and measure time
between VM’s launch and the moment when Server Manager window
appears. To view VM’s desktop, connect with VNC viewer to your host
to VNC screen :1 (port 5901):

># ./start-vm.sh 1

	Turn VM off. You may simply kill all KVM processes by

># killall kvm

7. Start FIVE instances with command below (as root) and measure time
interval between ALL VM’s launch and the moment when LAST Server Manager
window appears. To view VM’s desktops, connect with VNC viewer to your
host to VNC screens :1 thru :5 (ports 5901-5905):

># ./start-vm.sh 5

	Turn VMs off. You may simply kill all KVM processes by

># killall kvm

Baseline Data

The table below provides baseline data which we’ve got in our
environment.

Avg. Time refers to the lab with recommended hardware configuration,
while Max. Time refers to minimal hardware configuration.

	
	Boot ONE instance
	Boot FIVE instances

	Avg. Time
	3m:40s
	8m

	Max. Time
	5m
	20m

Host Optimizations

Default KVM installation could be improved to provide better
performance.

The following optimizations may improve host performance up to 30%:

	change default scheduler from CFQ to Deadline

	use ksm

	use vhost-net

Installing and Running the Development Version

The contrib/devstack [https://git.openstack.org/cgit/openstack/murano/tree/contrib/devstack] directory contains the files necessary to integrate
Murano with Devstack [http://www.devstack.org/].

	Follow Devstack documentation to setup a host for Devstack. Then clone
Devstack source code.

	Copy Murano integration scripts to Devstack either by setting environment
variable or providing complete path to devstack directory. Below one is using
environment variable:

$ export DEVSTACK_DIR=<complete path to devstack directory(clonned)>
$ cp lib/murano ${DEVSTACK_DIR}/lib
$ cp lib/murano-dashboard ${DEVSTACK_DIR}/lib
$ cp extras.d/70-murano.sh ${DEVSTACK_DIR}/extras.d

	Create a localrc file as input to devstack.

	The Murano, Neutron and Heat services are not enabled by default, so they must
be enabled in localrc before running stack.sh. This example localrc
file shows all of the settings required for Murano:

Enable Neutron
ENABLED_SERVICES+=,q-svc,q-agt,q-dhcp,q-l3,q-meta,neutron

Enable Heat
enable_service heat h-api h-api-cfn h-api-cw h-eng

Enable Murano
enable_service murano murano-api murano-engine

	Deploy your OpenStack Cloud with Murano:

$./stack.sh

Installing and Running Manually

Prepare Environment

Install Prerequisites

First you need to install a number of packages with your OS package manager.
The list of packages depends on the OS you use.

Ubuntu

$ sudo apt-get install python-pip python-dev \
> libmysqlclient-dev libpq-dev \
> libxml2-dev libxslt1-dev \
> libffi-dev

Fedora

Note

Fedora support wasn’t thoroughly tested. We do not guarantee that Murano
will work on Fedora.

$ sudo yum install gcc python-setuptools python-devel python-pip

CentOS

$ sudo yum install gcc python-setuptools python-devel
$ sudo easy_install pip

Install tox

$ sudo pip install tox

Install And Configure Database

Murano can use various database types on backend. For development purposes
SQLite is enough in most cases. For production installations you should use
MySQL or PostgreSQL databases.

Warning

Although Murano could use PostgreSQL database on backend, it wasn’t
thoroughly tested and should be used with caution.

To use MySQL database you should install it and create an empty database first:

$ apt-get install python-mysqldb mysql-server

$ mysql -u root -p
mysql> CREATE DATABASE murano;
mysql> GRANT ALL PRIVILEGES ON murano.* TO 'murano'@'localhost' \
 IDENTIFIED BY 'MURANO_DBPASS';
mysql> exit;

Install the API service and Engine

	Create a folder which will hold all Murano components.

$ mkdir ~/murano

	Clone the Murano git repository to the management server.

$ cd ~/murano
$ git clone git://git.openstack.org/openstack/murano

	Set up Murano config file

Murano has common config file for API and Engine servicies.

First, generate sample configuration file, using tox

$ cd ~/murano/murano
$ tox -e genconfig

And make a copy of it for further modifications

$ cd ~/murano/murano/etc/murano
$ ln -s murano.conf.sample murano.conf

	Edit murano.conf with your favorite editor. Below is an example
which contains basic settings your are likely need to configure.

Note

The example below uses SQLite database. Edit [database] section
if you want to use other database type.

[DEFAULT]
debug = true
verbose = true
rabbit_host = %RABBITMQ_SERVER_IP%
rabbit_userid = %RABBITMQ_USER%
rabbit_password = %RABBITMQ_PASSWORD%
rabbit_virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%
notification_driver = messagingv2

...

[database]
backend = sqlalchemy
connection = sqlite:///murano.sqlite

...

[keystone]
auth_url = 'http://%OPENSTACK_HOST_IP%:5000/v2.0'

...

[keystone_authtoken]
auth_uri = 'http://%OPENSTACK_HOST_IP%:5000/v2.0'
auth_host = '%OPENSTACK_HOST_IP%'
auth_port = 5000
auth_protocol = http
admin_tenant_name = %OPENSTACK_ADMIN_TENANT%
admin_user = %OPENSTACK_ADMIN_USER%
admin_password = %OPENSTACK_ADMIN_PASSWORD%

...

[murano]
url = http://%YOUR_HOST_IP%:8082

[rabbitmq]
host = %RABBITMQ_SERVER_IP%
login = %RABBITMQ_USER%
password = %RABBITMQ_PASSWORD%
virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%

	Create a virtual environment and install Murano prerequisites. We will use
tox for that. Virtual environment will be created under .tox directory.

$ cd ~/murano/murano
$ tox

	Create database tables for Murano.

$ cd ~/murano/murano
$ tox -e venv -- murano-db-manage \
> --config-file ./etc/murano/murano.conf upgrade

	Open a new console and launch Murano API. A separate terminal is
required because the console will be locked by a running process.

$ cd ~/murano/murano
$ tox -e venv -- murano-api \
> --config-file ./etc/murano/murano.conf

	Import Core Murano Library.

$ cd ~/murano/murano
$ tox -e venv -- murano-manage \
> --config-file ./etc/murano/murano.conf \
> import-package ./meta/io.murano

	
	Open a new console and launch Murano Engine. A separate terminal is

	required because the console will be locked by a running process.

$ cd ~/murano/murano
$ tox -e venv -- murano-engine --config-file ./etc/murano/murano.conf

Install Murano Dashboard

Murano API & Engine services provide the core of Murano. However, your need a
control plane to use it. This section decribes how to install and run Murano
Dashboard.

	Clone the repository with Murano Dashboard.

$ cd ~/murano
$ git clone git://git.openstack.org/openstack/murano-dashboard

	Clone horizon repository

$ git clone git://git.openstack.org/openstack/horizon

	Create venv and install muranodashboard as editable module.

$ cd horizon
$ tox -e venv -- pip install -e ../murano-dashboard

	Copy muranodashboard plugin file.

This step enables murano panel in horizon dashboard.

$ cp ../murano-dashboard/muranodashboard/local/_50_murano.py openstack_dashboard/local/enabled/

	Prepare local settings.

To get more information, check out official
horizon documentation [http://docs.openstack.org/developer/horizon/topics/settings.html#openstack-settings-partial].

$ cp openstack_dashboard/local/local_settings.py.example openstack_dashboard/local/local_settings.py

	Customize local settings according to Openstack installation.

...
ALLOWED_HOSTS = '*'

Provide OpenStack Lab credentials
OPENSTACK_HOST = '%OPENSTACK_HOST_IP%'

...

Set secret key to prevent it's generation
SECRET_KEY = 'random_string'

...

DEBUG_PROPAGATE_EXCEPTIONS = DEBUG

Also, it’s better to change default session backend from browser cookies to database to avoid
issues with forms during creating applications:

...
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': '/tmp/murano-dashboard.sqlite',
 }
}

SESSION_ENGINE = 'django.contrib.sessions.backends.db'

If you do not plan to get murano service from keystone application catalog,
provide where murano-api service is running:

...
MURANO_API_URL = 'http://localhost:8082'

	Perform database synchronization.

Optional step. Needed in case you set up database as a session backend.

$ tox -e venv -- python manage.py syncdb

You can reply ‘no’ since for development purpose separate user is not needed.

	Run Django server at 127.0.0.1:8000 or provide different IP and PORT parameters.

$ tox -e venv -- python manage.py runserver <IP:PORT>

Development server will be restarted automatically on every code change.

	Open dashboard using url http://localhost:8000

Import Murano Applications

Murano provides excellent catalog services, but it also requires applications
which to provide. This section describes how to import Murano Applications from
Murano App Incubator.

	Clone Murano App Incubator repository.

$ cd ~/murano
$ git clone git://git.openstack.org/openstack/murano-apps

	Import every package you need from this repository, using the command
below.

$ cd ~/murano/murano
$ tox -e venv -- murano-manage \
> --config-file ./etc/murano/murano.conf \
> import-package ../murano-app-incubator/%APPLICATION_DIRECTORY_NAME%

Network Configuration

Murano may work in various networking environments and is capable to detect the
current network configuration and choose the appropriate settings automatically.
However, some additional actions are required to support advanced scenarios.

Nova network support

Nova Network is simplest networking solution, which has limited capabilities
but is available on any OpenStack deployment without the need to deploy any
additional components.

When a new Murano Environment is created, Murano checks if a dedicated
networking service (i.e. Neutron) exists in the current OpenStack deployment.
It relies on Keystone’s service catalog for that.
If such a service is not present, Murano automatically falls back to Nova
Network. No further configuration is needed in this case, all the VMs spawned
by Murano will be joining the same Network.

Neutron support

If Neutron is installed, Murano enables its advanced networking features that
give you ability to not care about configuring networks for your application.

By default it will create an isolated network for each environment and join
all VMs needed by your application to that network. To install and configure application in
just spawned virtual machine Murano also requires a router connected to the external network.

Automatic Neutron network configuration

To create router automatically, provide the following parameters in config file:

[networking]

external_network = %EXTERNAL_NETWORK_NAME%
router_name = %MURANO_ROUTER_NAME%
create_router = true

To figure out the name of the external network, perform the following command:

$ neutron net-external-list

During the first deploy, required networks and router with specified name will be created and set up.

Manual neutron network configuration

	Step 1. Create public network

	First, you need to check for existence of external networks. Login as admin and go to
Project -> Network -> Network Topology. And check network type in network details at Admin -> Networks -> Network name page.
The same action can be done via CLI by running neutron net-external-list. To create new external network examine OpenStack documentation [http://docs.openstack.org/trunk/install-guide/install/apt/content/neutron_initial-external-network.html].

[image: ../_images/1.png]

	Step 2. Create local network

	Go to Project -> Network -> Networks.

	Click Create Network and fill the form.

[image: ../_images/2.png]
[image: ../_images/3.png]

	Step 3. Create router

	Go to Project -> Network -> Routers

	Click “Create Router”

	In the “Router Name” field, enter the murano-default-router

[image: ../_images/4_1.png]
If you specify a name other than murano-default-router, it will be necessary to change the following settings in the config file:

[networking]

router_name = %SPECIFIED_NAME%
create_router = false

	Click on the specified router name

	In the opened view click “Add interface”

	Specify the subnet and IP address

[image: ../_images/4_2.png]
And check the result in Network Topology tab.

[image: ../_images/5.png]

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Installation Guide

Prepare A Lab For Murano

This section provides basic information about lab’s system requirements.
It also contains a description of a test which you may use to check if
your hardware fits the requirements. To do this, run the test and
compare the results with baseline data provided.

System prerequisites

Supported Operation Systems

	Ubuntu Server 12.04 LTS

	RHEL/CentOS 6.4

System packages are required for Murano

Ubuntu

	gcc

	python-pip

	python-dev

	libxml2-dev

	libxslt-dev

	libffi-dev

	libmysqlclient-dev

	libpq-dev

	python-openssl

	mysql-client

	python-mysqldb

CentOS

	gcc

	python-pip

	python-devel

	libxml2-devel

	libxslt-devel

	libffi-devel

	postgresql-devel

	pyOpenSSL

	mysql

	MySQL-python

Lab Requirements

	Criteria
	Minimal
	Recommended

	CPU
	4 core @ 2.4 GHz
	24 core @ 2.67 GHz

	RAM
	8 GB
	24 GB or more

	HDD
	2 x 500 GB (7200 rpm)
	4 x 500 GB (7200 rpm

	RAID
	Software RAID-1 (use mdadm as
it will improve read
performance almost two times)
	Hardware RAID-10

Table: Hardware requirements

There are a few possible storage configurations except the shown above.
All of them were tested and were working well.

	1x SSD 500+ GB

	
	1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto

	the HDD and mount the SSD drive to folder where VM images are)

	1x HDD (15000 rpm) 500+ GB

Test Your Lab Host Performance

We have measured time required to boot 1 to 5 instances of Windows
system simultaneously. You can use this data as the baseline to check if
your system is fast enough.

You should use sysprepped images for this test, to simulate VM first
boot.

Steps to reproduce test:

	Prepare Windows 2012 Standard (with GUI) image in QCOW2 format. Let’s
assume that its name is ws-2012-std.qcow2

	Ensure that there is NO KVM PROCESSES on the host. To do this, run
command:

># ps aux | grep kvm

	Make 5 copies of Windows image file:

># for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

	Create script start-vm.sh in the folder with .qcow2 files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm -m 1024 -drive file=ws-2012-std-$i.qcow2,if=virtio -net user -net nic,model=virtio -nographic -usbdevice tablet -vnc :$i & done

	Start ONE instance with command below (as root) and measure time
between VM’s launch and the moment when Server Manager window
appears. To view VM’s desktop, connect with VNC viewer to your host
to VNC screen :1 (port 5901):

># ./start-vm.sh 1

	Turn VM off. You may simply kill all KVM processes by

># killall kvm

7. Start FIVE instances with command below (as root) and measure time
interval between ALL VM’s launch and the moment when LAST Server Manager
window appears. To view VM’s desktops, connect with VNC viewer to your
host to VNC screens :1 thru :5 (ports 5901-5905):

># ./start-vm.sh 5

	Turn VMs off. You may simply kill all KVM processes by

># killall kvm

Baseline Data

The table below provides baseline data which we’ve got in our
environment.

Avg. Time refers to the lab with recommended hardware configuration,
while Max. Time refers to minimal hardware configuration.

	
	Boot ONE instance
	Boot FIVE instances

	Avg. Time
	3m:40s
	8m

	Max. Time
	5m
	20m

Host Optimizations

Default KVM installation could be improved to provide better
performance.

The following optimizations may improve host performance up to 30%:

	change default scheduler from CFQ to Deadline

	use ksm

	use vhost-net

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Installation Guide

Installing and Running the Development Version

The contrib/devstack [https://git.openstack.org/cgit/openstack/murano/tree/contrib/devstack] directory contains the files necessary to integrate
Murano with Devstack [http://www.devstack.org/].

	Follow Devstack documentation to setup a host for Devstack. Then clone
Devstack source code.

	Copy Murano integration scripts to Devstack either by setting environment
variable or providing complete path to devstack directory. Below one is using
environment variable:

$ export DEVSTACK_DIR=<complete path to devstack directory(clonned)>
$ cp lib/murano ${DEVSTACK_DIR}/lib
$ cp lib/murano-dashboard ${DEVSTACK_DIR}/lib
$ cp extras.d/70-murano.sh ${DEVSTACK_DIR}/extras.d

	Create a localrc file as input to devstack.

	The Murano, Neutron and Heat services are not enabled by default, so they must
be enabled in localrc before running stack.sh. This example localrc
file shows all of the settings required for Murano:

Enable Neutron
ENABLED_SERVICES+=,q-svc,q-agt,q-dhcp,q-l3,q-meta,neutron

Enable Heat
enable_service heat h-api h-api-cfn h-api-cw h-eng

Enable Murano
enable_service murano murano-api murano-engine

	Deploy your OpenStack Cloud with Murano:

$./stack.sh

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Installation Guide

Installing and Running Manually

Prepare Environment

Install Prerequisites

First you need to install a number of packages with your OS package manager.
The list of packages depends on the OS you use.

Ubuntu

$ sudo apt-get install python-pip python-dev \
> libmysqlclient-dev libpq-dev \
> libxml2-dev libxslt1-dev \
> libffi-dev

Fedora

Note

Fedora support wasn’t thoroughly tested. We do not guarantee that Murano
will work on Fedora.

$ sudo yum install gcc python-setuptools python-devel python-pip

CentOS

$ sudo yum install gcc python-setuptools python-devel
$ sudo easy_install pip

Install tox

$ sudo pip install tox

Install And Configure Database

Murano can use various database types on backend. For development purposes
SQLite is enough in most cases. For production installations you should use
MySQL or PostgreSQL databases.

Warning

Although Murano could use PostgreSQL database on backend, it wasn’t
thoroughly tested and should be used with caution.

To use MySQL database you should install it and create an empty database first:

$ apt-get install python-mysqldb mysql-server

$ mysql -u root -p
mysql> CREATE DATABASE murano;
mysql> GRANT ALL PRIVILEGES ON murano.* TO 'murano'@'localhost' \
 IDENTIFIED BY 'MURANO_DBPASS';
mysql> exit;

Install the API service and Engine

	Create a folder which will hold all Murano components.

$ mkdir ~/murano

	Clone the Murano git repository to the management server.

$ cd ~/murano
$ git clone git://git.openstack.org/openstack/murano

	Set up Murano config file

Murano has common config file for API and Engine servicies.

First, generate sample configuration file, using tox

$ cd ~/murano/murano
$ tox -e genconfig

And make a copy of it for further modifications

$ cd ~/murano/murano/etc/murano
$ ln -s murano.conf.sample murano.conf

	Edit murano.conf with your favorite editor. Below is an example
which contains basic settings your are likely need to configure.

Note

The example below uses SQLite database. Edit [database] section
if you want to use other database type.

[DEFAULT]
debug = true
verbose = true
rabbit_host = %RABBITMQ_SERVER_IP%
rabbit_userid = %RABBITMQ_USER%
rabbit_password = %RABBITMQ_PASSWORD%
rabbit_virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%
notification_driver = messagingv2

...

[database]
backend = sqlalchemy
connection = sqlite:///murano.sqlite

...

[keystone]
auth_url = 'http://%OPENSTACK_HOST_IP%:5000/v2.0'

...

[keystone_authtoken]
auth_uri = 'http://%OPENSTACK_HOST_IP%:5000/v2.0'
auth_host = '%OPENSTACK_HOST_IP%'
auth_port = 5000
auth_protocol = http
admin_tenant_name = %OPENSTACK_ADMIN_TENANT%
admin_user = %OPENSTACK_ADMIN_USER%
admin_password = %OPENSTACK_ADMIN_PASSWORD%

...

[murano]
url = http://%YOUR_HOST_IP%:8082

[rabbitmq]
host = %RABBITMQ_SERVER_IP%
login = %RABBITMQ_USER%
password = %RABBITMQ_PASSWORD%
virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%

	Create a virtual environment and install Murano prerequisites. We will use
tox for that. Virtual environment will be created under .tox directory.

$ cd ~/murano/murano
$ tox

	Create database tables for Murano.

$ cd ~/murano/murano
$ tox -e venv -- murano-db-manage \
> --config-file ./etc/murano/murano.conf upgrade

	Open a new console and launch Murano API. A separate terminal is
required because the console will be locked by a running process.

$ cd ~/murano/murano
$ tox -e venv -- murano-api \
> --config-file ./etc/murano/murano.conf

	Import Core Murano Library.

$ cd ~/murano/murano
$ tox -e venv -- murano-manage \
> --config-file ./etc/murano/murano.conf \
> import-package ./meta/io.murano

	
	Open a new console and launch Murano Engine. A separate terminal is

	required because the console will be locked by a running process.

$ cd ~/murano/murano
$ tox -e venv -- murano-engine --config-file ./etc/murano/murano.conf

Install Murano Dashboard

Murano API & Engine services provide the core of Murano. However, your need a
control plane to use it. This section decribes how to install and run Murano
Dashboard.

	Clone the repository with Murano Dashboard.

$ cd ~/murano
$ git clone git://git.openstack.org/openstack/murano-dashboard

	Clone horizon repository

$ git clone git://git.openstack.org/openstack/horizon

	Create venv and install muranodashboard as editable module.

$ cd horizon
$ tox -e venv -- pip install -e ../murano-dashboard

	Copy muranodashboard plugin file.

This step enables murano panel in horizon dashboard.

$ cp ../murano-dashboard/muranodashboard/local/_50_murano.py openstack_dashboard/local/enabled/

	Prepare local settings.

To get more information, check out official
horizon documentation [http://docs.openstack.org/developer/horizon/topics/settings.html#openstack-settings-partial].

$ cp openstack_dashboard/local/local_settings.py.example openstack_dashboard/local/local_settings.py

	Customize local settings according to Openstack installation.

...
ALLOWED_HOSTS = '*'

Provide OpenStack Lab credentials
OPENSTACK_HOST = '%OPENSTACK_HOST_IP%'

...

Set secret key to prevent it's generation
SECRET_KEY = 'random_string'

...

DEBUG_PROPAGATE_EXCEPTIONS = DEBUG

Also, it’s better to change default session backend from browser cookies to database to avoid
issues with forms during creating applications:

...
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': '/tmp/murano-dashboard.sqlite',
 }
}

SESSION_ENGINE = 'django.contrib.sessions.backends.db'

If you do not plan to get murano service from keystone application catalog,
provide where murano-api service is running:

...
MURANO_API_URL = 'http://localhost:8082'

	Perform database synchronization.

Optional step. Needed in case you set up database as a session backend.

$ tox -e venv -- python manage.py syncdb

You can reply ‘no’ since for development purpose separate user is not needed.

	Run Django server at 127.0.0.1:8000 or provide different IP and PORT parameters.

$ tox -e venv -- python manage.py runserver <IP:PORT>

Development server will be restarted automatically on every code change.

	Open dashboard using url http://localhost:8000

Import Murano Applications

Murano provides excellent catalog services, but it also requires applications
which to provide. This section describes how to import Murano Applications from
Murano App Incubator.

	Clone Murano App Incubator repository.

$ cd ~/murano
$ git clone git://git.openstack.org/openstack/murano-apps

	Import every package you need from this repository, using the command
below.

$ cd ~/murano/murano
$ tox -e venv -- murano-manage \
> --config-file ./etc/murano/murano.conf \
> import-package ../murano-app-incubator/%APPLICATION_DIRECTORY_NAME%

Network Configuration

Murano may work in various networking environments and is capable to detect the
current network configuration and choose the appropriate settings automatically.
However, some additional actions are required to support advanced scenarios.

Nova network support

Nova Network is simplest networking solution, which has limited capabilities
but is available on any OpenStack deployment without the need to deploy any
additional components.

When a new Murano Environment is created, Murano checks if a dedicated
networking service (i.e. Neutron) exists in the current OpenStack deployment.
It relies on Keystone’s service catalog for that.
If such a service is not present, Murano automatically falls back to Nova
Network. No further configuration is needed in this case, all the VMs spawned
by Murano will be joining the same Network.

Neutron support

If Neutron is installed, Murano enables its advanced networking features that
give you ability to not care about configuring networks for your application.

By default it will create an isolated network for each environment and join
all VMs needed by your application to that network. To install and configure application in
just spawned virtual machine Murano also requires a router connected to the external network.

Automatic Neutron network configuration

To create router automatically, provide the following parameters in config file:

[networking]

external_network = %EXTERNAL_NETWORK_NAME%
router_name = %MURANO_ROUTER_NAME%
create_router = true

To figure out the name of the external network, perform the following command:

$ neutron net-external-list

During the first deploy, required networks and router with specified name will be created and set up.

Manual neutron network configuration

	Step 1. Create public network

	First, you need to check for existence of external networks. Login as admin and go to
Project -> Network -> Network Topology. And check network type in network details at Admin -> Networks -> Network name page.
The same action can be done via CLI by running neutron net-external-list. To create new external network examine OpenStack documentation [http://docs.openstack.org/trunk/install-guide/install/apt/content/neutron_initial-external-network.html].

[image: ../_images/1.png]

	Step 2. Create local network

	Go to Project -> Network -> Networks.

	Click Create Network and fill the form.

[image: ../_images/2.png]
[image: ../_images/3.png]

	Step 3. Create router

	Go to Project -> Network -> Routers

	Click “Create Router”

	In the “Router Name” field, enter the murano-default-router

[image: ../_images/4_1.png]
If you specify a name other than murano-default-router, it will be necessary to change the following settings in the config file:

[networking]

router_name = %SPECIFIED_NAME%
create_router = false

	Click on the specified router name

	In the opened view click “Add interface”

	Specify the subnet and IP address

[image: ../_images/4_2.png]
And check the result in Network Topology tab.

[image: ../_images/5.png]

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Installation Guide

SSL configuration

Murano components are able to work with SSL. This chapter will help your
to make proper settings with SSL configuration.

HTTPS for Murano API

SSL for Murano API service can be configured in ssl section in
/etc/murano/murano.conf. Just point to a valid SSL certificate.
See the example below:

[ssl]
cert_file = PATH
key_file = PATH
ca_file = PATH

	cert_file Path to the certificate file the server should use when binding to an SSL-wrapped socket.

	key_file Path to the private key file the server should use when binding to an SSL-wrapped socket.

	ca_file Path to the CA certificate file the server should use to validate client certificates provided during an SSL handshake. This is ignored if cert_file and “key_file” are not set.

The use of SSL is automatically started after point to HTTPS protocol
instead of HTTP during registration Murano API service in endpoints
(Change publicurl argument to start with https://).
SSL for Murano API is implemented like in any other Openstack component.
This realization is based on ssl python module so more information about
it can be found here [https://docs.python.org/2/library/ssl.html].

SSL for RabbitMQ

All Murano components communicate with each other by RabbitMQ. This
interaction can be encrypted with SSL. By default all messages in Rabbit
MQ are not encrypted. Each RabbitMQ Exchange should be configured
separately.

Murano API <-> Rabbit MQ exchange <-> Murano Engine

Edit ssl parameters in default section of /etc/murano/murano.conf. Set rabbit_use_ssl option to true and configure ssl kombu parameters.
Specify the path to the SSL keyfile and SSL CA certificate in a regular format: /path/to/file without quotes or leave it empty to
allow self-signed certificates.

connect over SSL for RabbitMQ (boolean value)
#rabbit_use_ssl=false

SSL version to use (valid only if SSL enabled). valid values
are TLSv1, SSLv23 and SSLv3. SSLv2 may be available on some
distributions (string value)
#kombu_ssl_version=

SSL key file (valid only if SSL enabled) (string value)
#kombu_ssl_keyfile=

SSL cert file (valid only if SSL enabled) (string value)
#kombu_ssl_certfile=

SSL certification authority file (valid only if SSL enabled)
(string value)
#kombu_ssl_ca_certs=

Murano Agent -> Rabbit MQ exchange

In main murano configuration file there is a section ,named rabbitmq, that is responsible for set up communication between Murano Agent and Rabbit MQ.
Just set ssl parameter to True to enable ssl.

[rabbitmq]
host = localhost
port = 5672
login = guest
password = guest
virtual_host = /
ssl = True

If you want to configure Murano Agent in a different way change
the default template. It can be found in Murano Core Library, located at http://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Resources/Agent-v1.template. Take
a look at appSettings section:

<appSettings>
 <add key="rabbitmq.host" value="%RABBITMQ_HOST%"/>
 <add key="rabbitmq.port" value="%RABBITMQ_PORT%"/>
 <add key="rabbitmq.user" value="%RABBITMQ_USER%"/>
 <add key="rabbitmq.password" value="%RABBITMQ_PASSWORD%"/>
 <add key="rabbitmq.vhost" value="%RABBITMQ_VHOST%"/>
 <add key="rabbitmq.inputQueue" value="%RABBITMQ_INPUT_QUEUE%"/>
 <add key="rabbitmq.resultExchange" value=""/>
 <add key="rabbitmq.resultRoutingKey" value="%RESULT_QUEUE%"/>
 <add key="rabbitmq.durableMessages" value="true"/>

 <add key="rabbitmq.ssl" value="%RABBITMQ_SSL%"/>
 <add key="rabbitmq.allowInvalidCA" value="true"/>
 <add key="rabbitmq.sslServerName" value=""/>

 </appSettings>

Desired parameter should be set directly to the value of the key that
you want to change. Quotes are need to be kept. Thus you can change
“rabbitmq.ssl” and “rabbitmq.port” values to make Rabbit MQ work with
this exchange in a different from Murano-Engine way.
After modification, don’t forget to zip and re-upload core library.

SSL for Murano Dashboard

If you are going not to use self-signed certificates additional
configuration do not need to be done. Just point https in the URL.
Otherwise, set MURANO_API_INSECURE = True on horizon config. You can
find it in /etc/openstack-dashboard/local_settings.py..

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

MuranoPL: Murano Programming Language

Content

	YAML

	YAQL

	Common class structure
	Class name

	Namespaces

	Extends

	Properties
	Contract

	Usage

	Default

	Workflow
	Expressions

	Assignment

	Block constructs

	Object model

	Murano PL System Class Definitions
	io.murano.system.Resources

	io.murano.system.Agent

	io.murano.system.AgentListener

	io.murano.system.HeatStack

	io.murano.system.InstanceNotifier

	io.murano.system.NetworkExplorer

	io.murano.system.StatusReporter

	MuranoPL Core Library
	Class: Object

	Class: Application

	Class: SecurityGroupManager

	Class: Environment

	Class: Instance

	Class: Network

	Class: NewNetwork

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	MuranoPL: Murano Programming Language

YAML

YAML is human-readable data serialization format that is a superset of JSON. Unlike JSON YAML was designed to be read and written by humans and relies on visual indentation to denote nesting of data structures. This is similar to how Python uses indentation for block structures instead of curly brackets in most C-like languages. Also YAML can contain more data types comparing to JSON. See http://yaml.org/ for detailed description of YAML.

MuranoPL was designed to be representable in YAML so that MuranoPL code could remain readable and structured. Thus usually MuranoPL files are YAML encoded documents. But MuranoPL engine itself doesn’t deal directly with YAML documents and it is up to hosting application to locate and deserialize definitions of particular classes. This gives hosting application ability to control where those definitions can be found (file system, database, remote repository etc) and possibly use some other serialization formats instead of YAML.

	MuranoPL engine relies on host deserialization code to automatically detect YAQL expressions in source definition and to provide them as instances of YaqlExpression class rather than plain strings. Usually YAQL expressions can be distinguished by presence of $ (dollar sign) and operators but in YAML developer can always explicitly state the type by using YAML tags. So

	Some text - a string,
$.something() - YAQL
"$.something()" - string (because of quote marks)
!!str $ - a string (because of YAML tag)
!yaql "text" - YAQL (because of YAML tag)

YAQL

YAQL (Yet Another Query Language) is a query language that was also designed as part of Murano project. MuranoPL makes an extensive use of YAQL. YAQL description can be found here: https://github.com/ativelkov/yaql

In simple words YAQL is a language for expression evaluation. 2 + 2, foo() > bar(), true != false are all valid YAQL expressions. The interesting thing in YAQL is that it has no built in list of functions. Everything YAQL can access is customizable. YAQL cannot call any function that was not explicitly registered to be accessible by YAQL. The same is true for operators. So the result of expression 2 * foo(3, 4) is completely depended on explicitly provided implementations of “foo” and “operator_*”.
YAQL uses dollar sign ($) to access external variables (that are also explicitly provided by host application) and function arguments. $variable is a syntax to get the value of variable “$variable”,
$1, $2 etc are the names for function arguments. “$” is a name for current object - data on which the expression is evaluated or a name of a single argument. Thus $ in the beginning of expression and $ in middle of it can refer to different things.

YAQL has a lot of functions out of the box that can be registered in YAQL context. For example

$.where($.myObj.myScalar > 5 and $.myObj.myArray.len() > 0 and $.myObj.myArray.any($ = 4)).select($.myObj.myArray[0]) can be executed on $ = array of objects and has a result of another array that is a filtration and projection of a source data. This is very similar to how SQL works but uses more Python-like syntax.

Note that there is no assignment operator in YAQL and ‘=’ means comparision operator that is what ‘==’ means in Python.

Because YAQL has no access to underlying operating system resources and 100% controllable by the host it is secure to execute YAQL expressions without establishing a trust to executed code. Also because of the functions are not predefined different functions may be accessible in different contexts. So the YAQL expressions that are used to specify property contracts are not necessarily valid in workflow definitions.

Common class structure

Here is a common template for class declarations. In sections below I’m going to explain what each section means. Note that it is in YAML format.

Name: class name
Namespaces: namespaces specification
Extends: [list of parent classes]
Properties: properties declaration
Workflow:
 methodName:
 Arguments:
 - list
 - of
 - arguments
 Body:
 - list
 - of
 - instructions

Thus MuranoPL class is a YAML dictionary with predefined key names. All keys except for Name are optional and can be omitted (but must be valid if present)

Class name

Class names are alphanumeric names of the classes. By tradition all class names begin with upper-case letter and written in PascalCasing.

In Murano all class names are globally unique. This achieved by means of namespaces. Class name may have explicit namespace specification (like ns:MyName) or implicit (just MyName which would be equal to =:MyName if = was a valid in name specification)

Namespaces

Namespaces declaration specifies prefixes that can be used in class body to make long class names shorter.

Namespaces:
 =: io.murano.services.windows
 srv: io.murano.services
 std: io.murano

In example above class name srv:Something would be automatically translated to “io.murano.services.Something”.

“=” means “current namespace” so that “MyClass” would mean “io.murano.services.windows.MyClass” in example above.

If class name contains period sign (.) in its name then it is assumed to be already fully namespace-qualified and is not expanded. Thus ns.Myclass would remain as is.

To make class names globally unique it is recommended to have developer’s domain name as part of namespace (as in example, similar to Java)

Extends

MuranoPL supports multiple inheritance. If present, Extends section lists base classes that are extended. If the list consists of single entry then it may be written as a scalar string instead of array. If no parents specified (or a key is omitted) then “io.murano.Object” is assumed making it the root class for all class hierarchies.

Properties

Properties are class attributes that together with methods form public class interface. Usually (but not always) properties are the values and references to other objects that are required to be entered in environment designer prior to workflow invocation.

Properties have the following declaration format:

propertyName:
 Contract: property contract
 Usage: property usage
 Default: property default

Contract

Contracts are YAQL expressions that say what type of value is expected for the property as well as additional constraints imposed on the property.

	Operation
	Definition

	$.int()
	integer value (may be null). String values that consist of digits would be converted to integer

	$.int().notNull()
	mandatory integer

	
$.string()

$.string().notNull()

	the same for strings. If the supplied value is not a string it will be converted to string

	
$.bool()

$.bool().notNull()

	bools are true and false. 0 is converted to false, other integers to true

	
$.class(ns:ClassName)

$.class(ns:ClassName).notNull()

	value must be a reference to an instance of specified class name

	$.class(ns:ClassName, ns:DefaultClassName)
	create instance of ns:DefaultClassName class if no instance provided

	$.class(ns:Name).check($.p = 12)
	value must be of type ns:Name and have a property ‘p’ equal to 12

	
[$.int()]

[$.int().notNull()]

	array of integers. Similar for other types

	[$.int().check($ > 0)]
	array of positive integers (thus not null)

	[$.int(), $.string()]
	array that has at least two elements, first is int and others are strings

	
[$.int(), 2]

[$.int(), 2, 5]

	
array of ints with at least 2 items

... and maximum of 5 items

	{ A: $.int(), B: [$.string()] }
	dictionary with ‘A’ key of type int and ‘B’ - array of strings

	
$

[]

{}

	any scalar or data structure as is
any array
any dictionary

	{ $.string().notNull(): $.int().notNull() }
	dictionary string -> int

	
A: StringMap

$.string().notNull(): $

	dictionary with ‘A’ key that must be equal to ‘StringMap’ and other keys be any scalar or data
structure

Usage

Usage states purpose of the property. This implies who and how can access it. The following usages are available:

	Property
	Explanation

	In
	Input property. Values of such properties are obtained from user and cannot be modified in MuranoPL workflows. This is default value for Usage key

	Out
	The value is obtained from executing MuranoPL workflow and cannot be modified by the user

	InOut
	Value can be edited by both user and workflow

	Const
	The same as In but once workflow is executed the property cannot be changed neither by user not the workflow

	Runtime
	Property is visible only from within workflows. It neither read from input neither serialized to workflow output

Usage attribute is optional and can be omitted (which implies In).

If the workflow tries to write to a property that is not declared with one of the types above it is considered to be private and accessible only to that class (and not serialized to output and thus would be lost upon next deployment). Attempt to read property that wasn’t initialized causes exception to be thrown.

Default

Default is a value that would be used if the property value wasn’t mentioned in input object model (but not when it is provided as null). Default (if specified) must conform to declared property contract. If Default is not specified then null is the default.

	For properties that are references to other classes Default can modify default values for referenced value. For example

	p:
 Contract: $.class(MyClass)
 Default: {a: 12}

would override default for ‘a’ property of MyClass for instance of MyClass that is created for this property.

Workflow

Workflows are the methods that together describe how the entities that are represented by MuranoPL classes are deployed.

In typical scenario root object in input data model is of type io.murano.Environment and has a “deploy” method. Invoking this method causes a series of infrastructure activities (typically by modifying Heat stack) and VM agents commands that cause execution of deployment scripts. Workflow role is to map data from input object model (or result of previously executed actions) to parameters of those activities and to initiate those activities in correct order.
Methods have input parameters and can return value to the caller.
Methods defined in Workflow section of the class using the following template:

methodName:
 Arguments:
 - list
 - of
 - arguments
 Body:
 - list
 - of
 - instructions

Arguments are optional and (if specified) declared using the same syntax as class properties except for Usage attribute that is meaningless for method parameters. E.g. arguments also have a contract and optional default.

Method body is an array of instructions that got executed sequentially. There are 3 types of instructions that can be found in workflow body: expressions, assignment and block constructs.

Expressions

Expressions are YAQL expressions that are executed for their side effect. All accessible object methods can be called in expression using $obj.methodName(arguments) syntax.

	Expression
	Explanation

	
$.methodName()

$this.methodName()

	invoke method ‘methodName’ on this (self) object

	
$.property.methodName()

$this.property.methodName()

	invocation of method on object that is in ‘property’ property

	$.method(1, 2, 3)
	methods can have arguments

	$.method(1, 2, thirdParameter => 3)
	named parameters also supported

	list($.foo().bar($this.property), $p)
	complex expressions can be constructed

Assignment

Assignments are single-key dictionaries with YAQL expression as key and arbitrary structure as a value. Such construct evaluated as assignment.

	Assignment
	Explanation

	$x: value
	assigns ‘value’ to local variable $x

	$.x: value
$this.x: value
	assign value to object’s property

	$.x: $.y
	copy value of property ‘y’ to property ‘x’

	$x: [$a, $b]
	sets $x to array of 2 values $a and $b

	
$x:

SomeKey:

NestedKey: $variable

	structures of any level of complexity can be evaluated

	$.x[0]: value`
	assign value to a first array entry of property x

	$.x.append(): value
	append value to array in property x

	$.x.insert(1): value
	insert value into position 1

	
$.x.key.subKey: value

$.x[key][subKey]: value

	deep dictionary modification

Block constructs

Block constructs control program flow. Block constructs are dictionaries that have strings as all its keys.
The following block constructs are available:

	Assignment
	Explanation

	Return: value
	return value from a method

	
If: predicate()

Then:

- code

- block

Else:

- code

- block

	predicate() is YAQL expressions that must be evaluated to true or false.

else part is optional

one-line code blocks can be written as a scalars rather than array.

	
While: predicate()

Do:
| - code
| - block

	predicate() must be evaluated to true or false

	
For: variableName

In: collection

Do:

- code

- block

	
	collection must be YAQL expression returning iterable collection or

	evaluatable array as in assignment instructions (like [1, 2, $x])

inside code block loop variable is accessible as $variableName

	
Repeat:

Do:

- code

- block

	repeat code block specified number of times

	Break:
	breaks from loop

	
Match:

case1:

- code

- block

case2:

- code

- block

Value: $valueExpression()

Default:

- code

- block

	matches result of $valueExpression() against set of possible values (cases).
the code block of first matched cased is executed.

	if not case matched and Default key is present (it is optional)

	than Default code block get executed.

case values are constant values (not expressions)

	
Switch:

$predicate1() :

- code

- block

$predicate2() :

- code

- block

Default:

- code

- block

	
	all code blocks that have their predicate evaluated to true are executed but the order

	of predicate evaluation is not fixed

default key is optional.

if no predicate evaluated to true than Default code block get executed.

	
Parallel:

- code

- block

Limit: 5

	executes all instructions in code block in separate green threads in parallel

limit is optional and means the maximum number of concurrent green threads.

Object model

Object model is JSON-serialized representation of objects and their properties. Everything user does in environment builder (dashboard) is reflected in object model. Object model is sent to App Catalog engine upon user decides to deploy built environment. On engine side MuranoPL objects are constructed and initialized from received Object model and predefined method is executed on a root object.

Objects serialized to JSON using the following template:

{
 "?": {
 "id": "globally unique object ID (UUID)",
 "type": "fully namespace-qualified class name",

 "optional designer-related entries can be placed here": {
 "key": "value"
 }
 },

 "classProperty1": "propertyValue",
 "classProperty2": 123,
 "classProperty3": ["value1", "value2"],

 "reference1": {
 "?": {
 "id": "object id",
 "type": "object type"
 },

 "property": "value"
 },

 "reference2": "referenced object id"
}

Objects can be identified as dictionaries that contain ”?” entry. All system fields are hidden in that entry.

There are 2 ways to specify references. The first method (“reference1” in example above) allow inline definition of object. When instance of referenced object is created outer object becomes its parent (owner) that is responsible for the object. The object itself may require that its parent (direct or indirect) be of specified type (like all application require to have Environment somewhere in parent chain).

Second way to reference object is by specifying other object id. That object must be defined somewhere else in object tree. Object references distinguished from strings having the same value by evaluating property contracts. The former case would have $.class(Name) while the later $.string() contract.

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	MuranoPL: Murano Programming Language

Murano PL System Class Definitions

Murano program language has system classes, which make deploying process as convenient as it could be.
System classes are used in user class definitions for a custom applications. This article is going to help users to operate with Murano PL classes without any issues.
All classes are located in the murano-engine component and don`t require particular import.

	io.murano.system.Resources

	io.murano.system.Agent

	io.murano.system.AgentListener

	io.murano.system.HeatStack

	io.murano.system.InstanceNotifier

	io.murano.system.NetworkExplorer

	io.murano.system.StatusReporter

io.murano.system.Resources

Used to provide API to all files, located in the Resource directory of application package. Those Resources usually used in an application deployment and needed to be specified in a workflow definition.
Available methods:

	yaml return resource file in yaml format

	string return resource file as string

	json return resource in json format

io.murano.system.Agent

Defines Murano Agent and ways of interacting with it.
Available methods:

	call(template, resources) - send an execution plan template and resource object, and wait for an operation to complete

	send(template, resources) - send execution plan template and resource class instance and continue execution without waiting for an end of the execution

	callRaw(plan) - send ready-to-perform murano agent execution plan and wait for an operation to complete

	sendRaw(plan) - send ready-to-perform murano agent execution plan and continue workflow execution

	queueName() - returns name of the queue with which Agent is working

io.murano.system.AgentListener

Used for monitoring Murano Agent.

	start() - start to monitor Murano Agent activity

	stop() - stop to monitor Murano Agent activity

	subscribe(message_id, event) - subscribe to the specified Agent event

	queueName() - returns name of the queue with which Agent is working

io.murano.system.HeatStack

Manage Heat stack operations.

	current() - returns current heat template

	parameters() - returns heat template parameters

	reload() - reload heat template

	setTemplate(template) - load heat template

	updateTemplate(template) - update current template with the specified part of heat stack

	output() - result of heat template execution

	push() - commit changes (requires after setTemplate and updateTemplate operations)

	delete() - delete current heat stack

io.murano.system.InstanceNotifier

Monitor application and instance statistics to provide billing feature.

	trackApplication(instance, title, unitCount) - start to monitor an application activity; title, unitCount - are optional

	untrackApplication(instance) - stop to monitor an application activity

	trackCloudInstance(instance) - start to monitor an instance activity

	untrackCloudInstance(instance) - stop to monitor an instance activity

io.murano.system.NetworkExplorer

Determines and configures network topology.

	getDefaultRouter() - determine default router

	getAvailableCidr(routerId, netId) - searching for non-allocated CIDR

	getDefaultDns() - get dns from config file

	getExternalNetworkIdForRouter(routerId) - Check for router connected to the external network

	getExternalNetworkIdForNetwork(networkId) - For each router this network is connected to check whether the router has external_gateway set

io.murano.system.StatusReporter

Provides feedback feature. To follow the deployment process in the UI, all status changes should be included in the application configuration.

	report(instance, msg) - Send message about an application deployment process

	report_error(instance, msg) - Report an error during an application deployment process

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	MuranoPL: Murano Programming Language

MuranoPL Core Library

Some objects and actions could be used in several application deployments. All common parts are grouped into MuranoPL libraries.
Murano core library is a set of classes needed in every deployment. Class names from core library could be used in the application definitions.
This library is located under the meta [http://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/] directory.
The following classes are included into the Murano core library:

io.murano:

	Class: Object

	Class: Application

	Class: SecurityGroupManager

	Class: Environment

io.murano.resources:

	Class: Instance

Resources:

	Agent-v1.template

	Agent-v2.template

	linux-init.sh

	windows-init.sh

	Class: Network

io.murano.lib.networks.neutron:

	Class: NewNetwork

Class: Object

Parent class for all MuranoPL classes, which implements initialize method, and setAttr and getAttr methods, which are defined in the pythonic part of the Object class.
All MuranoPL classes are implicitly inherited from this class.

Class: Application

Defines application itself. All custom applications should be derived from this class.
Has two properties:

Namespaces:
 =: io.murano

Name: Application

Workflow:
 reportDeployed:
 Arguments:
 - title:
 Contract: $.string()
 Default: null
 - unitCount:
 Contract: $.int()
 Default: null
 Body:
 - $this.find(Environment).instanceNotifier.trackApplication($this, $title, $unitCount)

 reportDestroyed:
 Body:
 - $this.find(Environment).instanceNotifier.untrackApplication($this)

Class: SecurityGroupManager

Manages security groups during application deployment.

Namespaces:
 =: io.murano.system
 std: io.murano

Name: SecurityGroupManager

Properties:
 environment:
 Contract: $.class(std:Environment).notNull()

 defaultGroupName:
 Contract: $.string()
 Usage: Runtime
 Default: format('MuranoSecurityGroup-{0}', $.environment.name)

Workflow:
 addGroupIngress:
 Arguments:
 - rules:
 Contract:
 - FromPort: $.int().notNull()
 ToPort: $.int().notNull()
 IpProtocol: $.string().notNull()
 External: $.bool().notNull()
 - groupName:
 Contract: $.string().notNull()
 Default: $this.defaultGroupName
 Body:
 - $ext_keys:
 true:
 ext_key: remote_ip_prefix
 ext_val: '0.0.0.0/0'
 false:
 ext_key: remote_mode
 ext_val: remote_group_id

 - $stack: $.environment.stack
 - $template:
 Resources:
 $groupName:
 Type: 'OS::Neutron::SecurityGroup'
 Properties:
 description: format('Composite security group of Murano environment {0}', $.environment.name)
 rules:
 - port_range_min: null
 port_range_max: null
 protocol: icmp
 remote_ip_prefix: '0.0.0.0/0'
 - $.environment.stack.updateTemplate($template)

 - $ingress: $rules.select(dict(
 port_range_min => $.FromPort,
 port_range_max => $.ToPort,
 protocol => $.IpProtocol,
 $ext_keys.get($.External).ext_key => $ext_keys.get($.External).ext_val
))

 - $template:
 Resources:
 $groupName:
 Type: 'OS::Neutron::SecurityGroup'
 Properties:
 rules: $ingress
 - $.environment.stack.updateTemplate($template)

Class: Environment

Defines an Environment in terms of deployments process. Groups all the Applications and their related infrastructure, able to deploy them at once.
Environments is intent to group applications to manage them easily.

	name - an environment name

	applications - list of applications belonging to an environment

	agentListener - property containing a ‘ io.murano.system.AgentListener object, which may be used to interact with Murano Agent

	stack - a property containing a HeatStack object which may be used to interact with the Heat Service

	instanceNotifier - a property containing a io.murano.system.InstanceNotifier which may be used to keep track of the amount of deployed instances

	defaultNetworks - a property containing user-defined Networks (io.murano.resources.Network), which may be used as the default networks for the Instances in this environment

	securityGroupManager- a property containing a SecurityGroupManager object, which may be used to construct a security group associated with this environment

Namespaces:
 =: io.murano
 res: io.murano.resources
 sys: io.murano.system

Name: Environment

Properties:
 name:
 Contract: $.string().notNull()

 applications:
 Contract: [$.class(Application).owned().notNull()]

 agentListener:
 Contract: $.class(sys:AgentListener)
 Usage: Runtime

 stack:
 Contract: $.class(sys:HeatStack)
 Usage: Runtime

 instanceNotifier:
 Contract: $.class(sys:InstanceNotifier)
 Usage: Runtime

 defaultNetworks:
 Contract:
 environment: $.class(res:Network)
 flat: $.class(res:Network)
 Usage: In

 securityGroupManager:
 Contract: $.class(sys:SecurityGroupManager)
 Usage: Runtime

Workflow:
 initialize:
 Body:
 - $this.agentListener: new(sys:AgentListener, name => $.name)
 - $this.stack: new(sys:HeatStack, name => $.name)
 - $this.instanceNotifier: new(sys:InstanceNotifier, environment => $this)
 - $this.reporter: new(sys:StatusReporter, environment => $this)
 - $this.securityGroupManager: new(sys:SecurityGroupManager, environment => $this)

 deploy:
 Body:
 - $.agentListener.start()
 - If: len($.applications) = 0
 Then:
 - $.stack.delete()
 Else:
 - $.applications.pselect($.deploy())
 - $.agentListener.stop()

Class: Instance

Defines virtual machine parameters and manage instance lifecycle: spawning, deploying, joining to the network, applying security group and destroying.

	name - instance name

	flavor - instance flavor, defining virtual machine ‘hardware’ parameters

	image - instance image, defining operation system

	keyname - key pair name, used to make connect easily to the instance; optional

	agent - configures interaction with Murano Agent using MuranoPL system class

	ipAddresses - list of all IP addresses, assigned to an instance

	
	networks - configures type of networks, to which instance will be joined.

	Custom networks, that extends Network class could be specified and an instance will be connected to them
and for a default environment network or flat network if corresponding values are set to true;
without additional configurations, instance will be joined to the default network that are set in the current environment.

	assignFloatingIp - determines, if floating IP need to be assigned to an instance, default is false

	floatingIpAddress - IP addresses, assigned to an instance after an application deployment

	securityGroupName - security group, to which instance will be joined, could be set; optional

Namespaces:
 =: io.murano.resources
 std: io.murano
 sys: io.murano.system

Name: Instance

Properties:
 name:
 Contract: $.string().notNull()
 flavor:
 Contract: $.string().notNull()
 image:
 Contract: $.string().notNull()
 keyname:
 Contract: $.string()
 Default: null

 agent:
 Contract: $.class(sys:Agent)
 Usage: Runtime
 ipAddresses:
 Contract: [$.string()]
 Usage: Out
 networks:
 Contract:
 useEnvironmentNetwork: $.bool().notNull()
 useFlatNetwork: $.bool().notNull()
 customNetworks: [$.class(Network).notNull()]
 Default:
 useEnvironmentNetwork: true
 useFlatNetwork: false
 customNetworks: []
 assignFloatingIp:
 Contract: $.bool().notNull()
 Default: false
 floatingIpAddress:
 Contract: $.string()
 Usage: Out
 securityGroupName:
 Contract: $.string()
 Default: null

Workflow:
 initialize:
 Body:
 - $.environment: $.find(std:Environment).require()
 - $.agent: new(sys:Agent, host => $)
 - $.resources: new(sys:Resources)

 deploy:
 Body:
 - $securityGroupName: coalesce(
 $.securityGroupName,
 $.environment.securityGroupManager.defaultGroupName
)
 - $.createDefaultInstanceSecurityGroupRules($securityGroupName)

 - If: $.networks.useEnvironmentNetwork
 Then:
 $.joinNet($.environment.defaultNetworks.environment, $securityGroupName)
 - If: $.networks.useFlatNetwork
 Then:
 $.joinNet($.environment.defaultNetworks.flat, $securityGroupName)
 - $.networks.customNetworks.select($this.joinNet($, $securityGroupName))

 - $userData: $.prepareUserData()

 - $template:
 Resources:
 $.name:
 Type: 'AWS::EC2::Instance'
 Properties:
 InstanceType: $.flavor
 ImageId: $.image
 UserData: $userData
 KeyName: $.keyname

 Outputs:
 format('{0}-PublicIp', $.name):
 Value:
 - Fn::GetAtt: [$.name, PublicIp]
 - $.environment.stack.updateTemplate($template)
 - $.environment.stack.push()
 - $outputs: $.environment.stack.output()
 - $.ipAddresses: $outputs.get(format('{0}-PublicIp', $this.name))
 - $.floatingIpAddress: $outputs.get(format('{0}-FloatingIPaddress', $this.name))
 - $.environment.instanceNotifier.trackApplication($this)

 joinNet:
 Arguments:
 - net:
 Contract: $.class(Network)
 - securityGroupName:
 Contract: $.string()
 Body:
 - If: $net != null
 Then:
 - If: $.assignFloatingIp and (not bool($.getAttr(fipAssigned)))
 Then:
 - $assignFip: true
 - $.setAttr(fipAssigned, true)
 Else:
 - $assignFip: false
 - $net.addHostToNetwork($, $assignFip, $securityGroupName)

 destroy:
 Body:
 - $template: $.environment.stack.current()
 - $patchBlock:
 op: remove
 path: format('/Resources/{0}', $.name)
 - $template: patch($template, $patchBlock)
 - $.environment.stack.setTemplate($template)
 - $.environment.stack.push()
 - $.environment.instanceNotifier.untrackApplication($this)

 createDefaultInstanceSecurityGroupRules:
 Arguments:
 - groupName:
 Contract: $.string().notNull()
 Body:

 - If: !yaql "'w' in toLower($.image)"
 Then:
 - $rules:
 - ToPort: 3389
 IpProtocol: tcp
 FromPort: 3389
 External: true
 Else:
 - $rules:
 - ToPort: 22
 IpProtocol: tcp
 FromPort: 22
 External: true
 - $.environment.securityGroupManager.addGroupIngress(
 rules => $rules, groupName => $groupName)

 getDefaultSecurityRules:
 prepareUserData:
 Body:
 - If: !yaql "'w' in toLower($.image)"
 Then:
 - $configFile: $.resources.string('Agent-v1.template')
 - $initScript: $.resources.string('windows-init.ps1')
 Else:
 - $configFile: $.resources.string('Agent-v2.template')
 - $initScript: $.resources.string('linux-init.sh')

 - $configReplacements:
 "%RABBITMQ_HOST%": config(rabbitmq, host)
 "%RABBITMQ_PORT%": config(rabbitmq, port)
 "%RABBITMQ_USER%": config(rabbitmq, login)
 "%RABBITMQ_PASSWORD%": config(rabbitmq, password)
 "%RABBITMQ_VHOST%": config(rabbitmq, virtual_host)
 "%RABBITMQ_SSL%": str(config(rabbitmq, ssl)).toLower()
 "%RABBITMQ_INPUT_QUEUE%": $.agent.queueName()
 "%RESULT_QUEUE%": $.environment.agentListener.queueName()

 - $scriptReplacements:
 "%AGENT_CONFIG_BASE64%": base64encode($configFile.replace($configReplacements))
 "%INTERNAL_HOSTNAME%": $.name
 "%MURANO_SERVER_ADDRESS%": coalesce(config(file_server), config(rabbitmq, host))
 "%CA_ROOT_CERT_BASE64%": ""

 - Return: $initScript.replace($scriptReplacements)

Instance class uses the following resources:

	Agent-v2.template - Python Murano Agent template (This agent is unified and lately, Windows Agent will be included into it)

	linux-init.sh - Python Murano Agent initialization script, which sets up an agent with valid information, containing in updated agent template.

	Agent-v1.template - Windows Murano Agent template

	windows-init.sh - Windows Murano Agent initialization script

Class: Network

Base abstract class for all MuranoPL classes, representing networks.

Namespaces:
 =: io.murano.resources

Name: Network

Workflow:
 addHostToNetwork:
 Arguments:
 - instance:
 Contract: $.class(Instance).notNull()
 - assignFloatingIp:
 Contract: $.bool().notNull()
 Default: false
 - securityGroupName:
 Contract: $.string()
 Default: null

Class: NewNetwork

Defining network type, using in Neutron.

	name - network name

	autoUplink - defines auto uplink network parameter; optional, turned on by default

	autogenerateSubnet - defines auto subnet generation; optional, turned on by default

	subnetCidr - CIDR, defining network subnet, optional

	dnsNameserver - DNS server name, optional

	useDefaultDns - defines ether set default DNS or not, optional, turned on by default

Namespaces:
 =: io.murano.lib.networks.neutron
 res: io.murano.resources
 std: io.murano
 sys: io.murano.system

Name: NewNetwork

Extends: res:Network

Properties:
 name:
 Contract: $.string().notNull()

 externalRouterId:
 Contract: $.string()
 Usage: InOut

 autoUplink:
 Contract: $.bool().notNull()
 Default: true

 autogenerateSubnet:
 Contract: $.bool().notNull()
 Default: true

 subnetCidr:
 Contract: $.string()
 Usage: InOut

 dnsNameserver:
 Contract: $.string()
 Usage: InOut

 useDefaultDns:
 Contract: $.bool().notNull()
 Default: true

Workflow:
 initialize:
 Body:
 - $.environment: $.find(std:Environment).require()
 - $.netExplorer: new(sys:NetworkExplorer)

 deploy:
 Body:
 - $.ensureNetworkConfigured()
 - $.environment.instanceNotifier.untrackApplication($this)

 addHostToNetwork:
 Arguments:
 - instance:
 Contract: $.class(res:Instance).notNull()
 - assignFloatingIp:
 Contract: $.bool().notNull()
 Default: false
 - securityGroupName:
 Contract: $.string()
 Default: null
 Body:
 - $.ensureNetworkConfigured()
 - $portname: $instance.name + '-port-to-' + $.id()
 - $template:
 Resources:
 $portname:
 Type: 'OS::Neutron::Port'
 Properties:
 network_id: {Ref: $.net_res_name}
 fixed_ips: [{subnet_id: {Ref: $.subnet_res_name}}]
 security_groups:
 - Ref: $securityGroupName
 $instance.name:
 Properties:
 NetworkInterfaces:
 - Ref: $portname
 - $.environment.stack.updateTemplate($template)

 - If: $assignFloatingIp
 Then:
 - $extNetId: $.netExplorer.getExternalNetworkIdForRouter($.externalRouterId)
 - If: $extNetId != null
 Then:
 - $fip_name: $instance.name + '-FloatingIP-' + $.id()
 - $template:
 Resources:
 $fip_name:
 Type: 'OS::Neutron::FloatingIP'
 Properties:
 floating_network_id: $extNetId
 $instance.name + '-FloatingIpAssoc-' + $.id():
 Type: 'OS::Neutron::FloatingIPAssociation'
 Properties:
 floatingip_id:
 Ref: $fip_name
 port_id:
 Ref: $portname
 Outputs:
 $instance.name + '-FloatingIPaddress':
 Value:
 Fn::GetAtt:
 - $fip_name
 - floating_ip_address
 Description: Floating IP assigned
 - $.environment.stack.updateTemplate($template)

 ensureNetworkConfigured:
 Body:
 - If: !yaql "not bool($.getAttr(networkConfigured))"
 Then:
 - If: $.useDefaultDns and (not bool($.dnsNameserver))
 Then:
 - $.dnsNameserver: $.netExplorer.getDefaultDns()

 - $.net_res_name: $.name + '-net-' + $.id()
 - $.subnet_res_name: $.name + '-subnet-' + $.id()
 - $.createNetwork()
 - If: $.autoUplink and (not bool($.externalRouterId))
 Then:
 - $.externalRouterId: $.netExplorer.getDefaultRouter()
 - If: $.autogenerateSubnet and (not bool($.subnetCidr))
 Then:
 - $.subnetCidr: $.netExplorer.getAvailableCidr($.externalRouterId, $.id())
 - $.createSubnet()
 - If: !yaql "bool($.externalRouterId)"
 Then:
 - $.createRouterInterface()

 - $.environment.stack.push()
 - $.setAttr(networkConfigured, true)

 createNetwork:
 Body:
 - $template:
 Resources:
 $.net_res_name:
 Type: 'OS::Neutron::Net'
 Properties:
 name: $.name
 - $.environment.stack.updateTemplate($template)

 createSubnet:
 Body:
 - $template:
 Resources:
 $.subnet_res_name:
 Type: 'OS::Neutron::Subnet'
 Properties:
 network_id: {Ref: $.net_res_name}
 ip_version: 4
 dns_nameservers: [$.dnsNameserver]
 cidr: $.subnetCidr
 - $.environment.stack.updateTemplate($template)

 createRouterInterface:
 Body:
 - $template:
 Resources:
 $.name + '-ri-' + $.id():
 Type: 'OS::Neutron::RouterInterface'
 Properties:
 router_id: $.externalRouterId
 subnet_id: {Ref: $.subnet_res_name}
 - $.environment.stack.updateTemplate($template)

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Dynamic UI Definition specification

The main purpose of Dynamic UI is to generate application creation
forms “on-the-fly”. Murano dashboard doesn’t know anything about what
applications can be deployed and which web form are needed to create
application instance. So all application definitions should contain a
yaml file which tells dashboard how to create an application and what
validations are to be applied. This document will help you to compose
a valid UI definition for your application.

Structure

UI definition should be a valid yaml file and should contain the following sections (for version 2):

	Version - points out to which syntax version is used, optional

	Templates - optional, auxiliary section, used together with an Application section, optional

	Application - object model description which will be used for application deployment, required

	Forms - web form definitions, required

Version

Version of supported dynamic UI syntax. The latest version is 2.
This is optional section, default version is set to 1.
Version mapping:
Murano 0.4 - version 1
Murano 0.5 - version 2

Application and Templates

In the Application section an application object model is
described. This model will be translated into json and according to
that json application will be deployed. Application section should
contain all necessary keys that are required by murano-engine to
deploy an application. Note that under ? section goes system part
of the model. You can pick parameters you got from the user (they
should be described in the Forms section) and pick the right place
where they should be set. To do this YAQL [https://github.com/ativelkov/yaql/blob/master/README.md] is
used. All lines are going to be checked for a yaql
expressions. Currently, 2 yaql functions are provided for object model
generation:

	generateHostname is used for machine hostname generation; it accepts 2 arguments: name pattern (string) and index (integer). If ‘#’ symbol is present in name pattern, it will be replaced with the index provided. If pattern is not given, a random name will be generated.

	repeat is used to produce a list of data snippets, given the template snippet (first argument) and number of times it should be reproduced (second argument). Inside that template snippet current step can be referenced as $index.

Note that while evaluating YAQL expressions referenced from
Application section (as well as almost all attributes inside
Forms section, see later) $ root object is set to the list of
dictionaries with cleaned forms’ data. So to obtain cleaned value of
e.g. field name of form appConfiguration , you should reference it
as $.appConfiguration.name. This context will be called as
standard context throughout the text.

Example:

Templates:
 primaryController:
 ?:
 type: io.murano.windows.activeDirectory.PrimaryController
 host:
 ?:
 type: io.murano.windows.Host
 adminPassword: $.serviceConfiguration.adminPassword
 name: generateHostname($.serviceConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage

 secondaryController:
 ?:
 type: io.murano.windows.activeDirectory.SecondaryController
 host:
 ?:
 type: io.murano.windows.Host
 adminPassword: $.serviceConfiguration.adminPassword
 name: generateHostname($.serviceConfiguration.unitNamingPattern, $index + 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage

Application:
 ?:
 type: io.murano.windows.activeDirectory.ActiveDirectory
 name: $.serviceConfiguration.name
 primaryController: $primaryController
 secondaryControllers: repeat($secondaryController, $.serviceConfiguration.dcInstances - 1)

Forms

This section describes markup elements for defining forms (which are currently rendered and validated with Django). Each form has name, field definitions (mandatory) and validator definitions (optionally). Note that each form is splitted into 2 parts - input area (left side, where all the controls are located) and description area (right side, where descriptions of the controls are located).

Each field should contain:

	name - system field name, could be any

	type - system field type

Currently supported options for type attribute are:

	string - text field (no inherent validations) with one-line text input

	boolean - boolean field, rendered as a checkbox

	text - same as string, but with a multi-line input

	integer - integer field with an appropriate validation, one-line text input

	password - text field with validation for strong password, rendered as two masked text inputs (second one is for password confirmation)

	clusterip - specific text field, used for entering cluster IP address (validations for valid IP address syntax and for that IP to belong to a fixed subnet)

	floatingip - specific boolean field, used for specifying whether or not an instance should have floating IP; DEPRECATED FIELD - use boolean field instead

	domain - specific field, used for selecting Active Directory domain from a list (or creating a new Active Directory application); DEPRECATED FIELD - use io.murano.windows.ActiveDirectory instead

	databaselist - Specific field, a list of databases (comma-separated list of databases’ names, where each name has the following syntax first symbol should be latin letter or underscore; subsequent symbols can be latin letter, numeric, underscore, at the sign, number sign or dollar sign), rendered as one-line text input

	flavor - specific field, used for selection instance flavor from a list

	keypair - specific field, used for selecting keypair from a list

	image- specific field, used for selecting instance image from a list

	azone - specific field, used for selecting instance availability zone from a list

	any other value is considered to be a fully qualified name for some Application package and is rendered as a pair of controls: one for selecting already existing Applications of that type in an Environment, second - for creating a new Application of that type and selecting it

Other arguments (and whether they are required or not) depends on
field’s type and other attributes values. Among the most common
attributes are:

	label - name, that will be displayed in the form; defaults to name being capitalized.

	description - description, that will be displayed in the description area.
Use yaml line folding character >- to keep the correct formatting during data transferring.

	descriptionTitle - title of the description, defaults to label; displayed in the description area

	hidden whether field should be visible or not in the input area.
Note that hidden field’s description will still be visible in the descriptions area (if given).
Hidden fields are used storing some data to be used by other, visible fields.

	minLength, maxLength (for string fields) and minValue, maxValue (for integer fields) are transparently translated into django validation properties.

	validators is a list of dictionaries, each dictionary should at least have expr key, under that key either some YAQL [https://github.com/stackforge/yaql/blob/master/README.rst] expression is stored, either one-element dictionary with regexpValidator key (and some regexp string as value). Another possible key of a validator dictionary is message, and although it is not required, it is highly desirable to specify it - otherwise, when validator fails (i.e. regexp doesn’t match or YAQL expression evaluates to false) no message will be shown. Note that field-level validators use YAQL context different from all other attributes and section: here $ root object is set to the value of field being validated (to make expressions shorter).

	widgetMedia sets some custom CSS and JavaScript used for the field’s widget rendering. Note, that files should be placed to Django static folder in advance.
Mostly they are used to do some client-side field enabling/disabling, hiding/unhiding etc.
This is a temporary field which will be dropped once Version 3 of Dynamic UI is implemented (since it will transparently translate YAQL expressions into the appropriate JavaScript).

	requirements is used only with flavor field and prevents user to pick unstable for a deployment flavor.
It allows to set minimum ram (in MBs), disk space (in GBs) or virtual CPU quantity.

Example that shows how to hide items, smaller than regular ‘small’ flavor in flavor select field:

- name: flavor
 type: flavor
 label: Instance flavor
 requirements:
 min_disk: 20
 min_vcpus: 2
 min_memory_mb: 2048

Besides field-level validators form-level validators also exist. They
use standard context for YAQL evaluation and are required when
there is need to validate some form’s constraint across several
fields.

Example

Forms:
 - serviceConfiguration:
 fields:
 - name: name
 type: string
 label: Service Name
 description: >-
 To identify your service in logs please specify a service name
 - name: dcInstances
 type: integer
 hidden: true
 initial: 1
 required: false
 maxLength: 15
 helpText: Optional field for a machine hostname template
 - name: unitNamingPattern
 type: string
 label: Hostname template
 description: >-
 For your convenience all instance hostnames can be named
 in the same way. Enter a name and use # character for incrementation.
 For example, host# turns into host1, host2, etc. Please follow Windows
 hostname restrictions.
 required: false
 regexpValidator: '^(([a-zA-Z0-9#][a-zA-Z0-9-#]*[a-zA-Z0-9#])\.)*([A-Za-z0-9#]|[A-Za-z0-9#][A-Za-z0-9-#]*[A-Za-z0-9#])$'
 # FIXME: does not work for # turning into 2-digit numbers
 maxLength: 15
 helpText: Optional field for a machine hostname template
 # temporaryHack
 widgetMedia:
 js: ['muranodashboard/js/support_placeholder.js']
 css: {all: ['muranodashboard/css/support_placeholder.css']}
 validators:
 # if unitNamingPattern is given and dcInstances > 1, then '#' should occur in unitNamingPattern
 - expr: $.serviceConfiguration.dcInstances < 2 or not $.serviceConfiguration.unitNamingPattern.bool() or '#' in$.serviceConfiguration.unitNamingPattern
 message: Incrementation symbol "#" is required in the Hostname template
 - instanceConfiguration:
 fields:
 - name: title
 type: string
 required: false
 hidden: true
 descriptionTitle: Instance Configuration
 description: Specify some instance parameters on which service would be created.
 - name: flavor
 type: flavor
 label: Instance flavor
 description: >-
 Select registered in Openstack flavor. Consider that service performance
 depends on this parameter.
 required: false
 - name: osImage
 type: image
 imageType: windows
 label: Instance image
 description: >-
 Select valid image for a service. Image should already be prepared and
 registered in glance.
 - name: availabilityZone
 type: azone
 label: Availability zone
 description: Select availability zone where service would be installed.
 required: false

Full example with Active Directory application form definitions is available here UI Definition Of AD App

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano workflow

What happens when a component is being created in an environment? This document
will use the Telnet package referenced elsewhere as an example. It assumes the
package has been previously uploaded to Murano.

Step 1. Begin deployment

The API sends a message that instructs murano-engine, the workflow component of
Murano, to deploy an environment. The message consists of a JSON document
containing the class types required to create the environment, as well as any
parameters the user selected prior to deployment. Examples are:

	An Class: Environment object (io.murano.Environment) with a name

	An object (or objects) referring to networks that need to be created
or that already exist

	A list of Applications (e.g. io.murano.apps.linux.Telnet). Each Application
will contain, or will reference, anything it requires. The Telnet example,
has a property called instance whose contract states it must be of type
io.murano.resources.Instance. In turn the Instance has properties it requires
(like a name, a flavor, a keypair name).

Each object in this model has an ID so that the state of each can be tracked.

The classes that are required are determined by the application’s manifest. In
the Telnet example only one class is explicitly
required; the telnet application definition.

The Telnet class definition refers to several other
classes. It extends Class: Application and it requires an Class: Instance.
It also refers to the Class: Environment in which it will be contained,
sends reports through the environment’s io.murano.system.StatusReporter
and adds security group rules to the Class: SecurityGroupManager.

Step 2. Load definitions

The engine makes a series of requests to the API to download packages it
needs. These requests pass the class names the environment will require, and
during this stage the engine will validate that all the required classes exist
and are accessible, and will begin creating them. All Classes whose workflow
sections contain an initialize fragment are then initialized. A typical initialization
order would be (defined by the ordering in the model sent to the murano-engine):

	Class: Network

	Class: Instance

	Class: Object

	Class: Environment

Step 3. Deploy resources

The workflow defined in Environment.deploy is now executed. The first step
typically is to initialize the messaging component that will pay attention
to murano-agent (see later). The next stage is to deploy each application the
environment knows about in turn, by running deploy() for each application.
This happens concurrently for all the applications belonging to an instance.

In the Telnet example (under Workflow), the workflow
dictates sending a status message (via the environment’s reporter, and
configuring some security group rules. It is at this stage that the engine
first contacts Heat to request information about any pre-existing resources
(and there will be none for a fresh deploy) before updating the new Heat
template with the security group information.

Next it instructs the engine to deploy the instance it relies on. A large
part of the interaction with Heat is carried out at this stage; the first
thing an Instance does is add itself to the environment’s network. Since the
network doesn’t yet exist, murano-engine runs the neutron network workflow
which pushes template fragments to Heat. These fragments can define:
* Networks
* Subnets
* Router interfaces

Once this is done the Instance itself constructs a Heat template fragment and
again pushes it to Heat. The Instance will include a userdata script that
is run when the instance has started up, and which will configure and run
murano-agent.

Step 4. Software configuration via murano-agent

If the workflow includes murano-agent components (and the telnet example does),
typically the application workflow will execute them as the next step.

In the telnet example, the workflow instructs the engine to load
DeployTelnet.yaml as YAML, and pass it to the murano-agent running on the
configured instance. This causes the agent to execute the EntryPoint defined
in the agent script (which in this case deploys some packages and sets some
iptables rules).

Step 5. Done

After execution is finished, the engine sends a last message indicating that
fact; the API receives it and marks the environment as deployed.

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano Policy Enforcement

	Murano Policy Enforcement Example
	Introduction

	Example

	Murano Policy Enforcement Setup Guide
	Introduction

	Setup

	Murano Policy Enforcement - Developer Guide
	Model Decomposition

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Policy Enforcement

Murano Policy Enforcement Example

Introduction

As a part of the policy guided fulfillment, we need to enforce policies on the Murano environment deployment.
If the policy enforcement failed, deployment fails. Policies are defined and evaluated in the Congress [https://wiki.openstack.org/wiki/Congress] project.
The policy language for Congress is Datalog. The congress policy consists of Datalog rules and facts.
The cloud administrator defines policies in Congress. Examples of such policies:

	all VM instances must have at least 2GB of RAM

	all Apache server instances must have given certified version

	data placement policy: all DB instances must be deployed at given geo location (enforcing some law restriction on data placement)

These policies are evaluated over data in the form of tables (Congress data structures). A deployed Murano environment must be
decomposed to Congress data structures. The decomposed environment is sent to congress for simulation. Congress simulates
whether the resulting state does not violate any defined policy. Deployment is aborted in case of policy violation.
Murano uses two predefined policies in Congress:

	murano_system contains rules and facts of policies defined by cloud admin.

	murano contains only facts/records reflecting resulting state after deployment of an environment.

Records in the murano policy are queried by rules from the murano_system policy. The congress simulation does not create any
records in the murano policy. Congress will only give feedback on whether the resulting state violates the policy or not.

Example

In this example we will create rules that prohibit creating VM instances with flavor with more than 2048 MB ram.

Prior creating rules your OpenStack installation has to be configured as described in Introduction.

Example rules

	Create predeploy_errors rule

Policy validation engine checks rule predeploy_errors and rules referenced inside this rule are evaluated by congress engine.

We create example rule which references flavor_ram rule we create afterwards. It disables flavors with ram higher than 2048 MB and constructs message returned to the user in msg variable.

predeploy_errors(eid, obj_id, msg) :-
 murano:objects(obj_id, pid, type),
 murano:objects(eid, tid, "io.murano.Environment"),
 murano:connected(eid, pid),
 murano:properties(obj_id, "flavor", flavor_name),
 flavor_ram(flavor_name, ram),
 gt(ram, 2048),
 murano:properties(obj_id, "name", obj_name),
 concat(obj_name, ": instance flavor has RAM size over 2048MB", msg)

Use this command to create the rule:

congress policy rule create murano_system "predeploy_errors(eid, obj_id, msg) :- murano:objects(obj_id, pid, type), murano:objects(eid, tid, \"io.murano.Environment\"), murano:connected(eid, pid), murano:properties(obj_id, \"flavor\", flavor_name), flavor_ram(flavor_name, ram), gt(ram, 2048), murano:properties(obj_id, \"name\", obj_name), concat(obj_name, \": instance flavor has RAM size over 2048MB\", msg)"

In this example we used data from policy murano which is represented by murano:properties. There are stored rows with decomposition of model representing murano application. We also used built-in functions of congress - gt - greater-than, and concat which joins two strings into variable.

	Create flavor_ram rule

We create the rule that resolves parameters of flavor by flavor name and returns ram parameter. It uses rule flavors from nova policy. Data in this policy is filled by nova datasource driver.

Use this command to create the rule:

congress policy rule create murano_system "flavor_ram(flavor_name, ram) :- nova:flavors(id, flavor_name, cpus, ram)"

Example rules in murano app deployment

	Create environment with simple application

	Choose Git application from murano applications

	Create with “m1.medium” instance flavor which uses 4096MB so validation will fail

[image: ../_images/new-instance.png]

	Deploy environment

	Environment is in Status: Deploy FAILURE

	Check deployment log:

[image: ../_images/deployment-log.png]

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Policy Enforcement

Murano Policy Enforcement Setup Guide

Introduction

Before policy enforcement feature will be used, it has to be configured. It has
to be enabled in Murano configuration, and Congress has to have created policy
and rules used during policy evaluation.

This document does not cover Murano and Congress configuration options useful
for Murano application deployment (e.g., DNS setup, floating IPs, ...).

Setup

This setup uses openstack command. You can use copy-paste for commands.

If you are using DevStack installation, you can setup environment using
following command.

source devstack/openrc admin admin

	Murano

Enable policy enforcement in Murano:

	edit /etc/murano/murano.conf to enable enable_model_policy_enforcer
option:

[engine]
Enable model policy enforcer using Congress (boolean value)
enable_model_policy_enforcer = true

	restart murano-engine

	Congress

Policy enforcement uses following policies:

	murano policy

Policy is created by Congress’ Murano datasource driver, which is part of
Congress. It has to be configured for the OpenStack tenant where Murano
application will be deployed. Datasource driver retrieves deployed Murano
environments and populates Congress’ murano policy tables
(policyenf_dev).

Following commands removes existing murano policy, and creates new
murano policy configured for tenant demo.

. ~/devstack/openrc admin admin # if you are using devstack, otherwise you have to setup env manually

remove default murano datasource configuration, because it is using 'admin' tenant. We need 'demo' tenant to be used.
openstack congress datasource delete murano
openstack congress datasource create murano murano --config username="$OS_USERNAME" --config tenant_name="demo" --config password="$OS_PASSWORD" --config auth_url="$OS_AUTH_URL"

	
	murano_system policy

	Policy holds user defined rules for policy enforcement. Rules typically
uses tables from other policies (e.g., murano, nova, keystone, ...).
Policy enforcement expects predeploy_errors table here which is created
by creating predeploy_errors rules.

Following command creates murano_system rule

openstack congress policy create murano_system

	
	murano_action policy with internal management rules

	Following rules are used internally in policy enforcement request.
These rules are stored in dedicated murano_action policy which is
created here.
They are important for case when an environment is deployed again.

create murano_action policy
openstack congress policy create murano_action --kind action

register action deleteEnv
openstack congress policy rule create murano_action 'action("deleteEnv")'

states
openstack congress policy rule create murano_action 'murano:states-(eid, st) :- deleteEnv(eid), murano:states(eid, st)'

parent_types
openstack congress policy rule create murano_action 'murano:parent_types-(tid, type) :- deleteEnv(eid), murano:connected(eid, tid),murano:parent_types(tid,type)'
openstack congress policy rule create murano_action 'murano:parent_types-(eid, type) :- deleteEnv(eid), murano:parent_types(eid,type)'

properties
openstack congress policy rule create murano_action 'murano:properties-(oid, pn, pv) :- deleteEnv(eid), murano:connected(eid, oid), murano:properties(oid, pn, pv)'
openstack congress policy rule create murano_action 'murano:properties-(eid, pn, pv) :- deleteEnv(eid), murano:properties(eid, pn, pv)'

objects
openstack congress policy rule create murano_action 'murano:objects-(oid, pid, ot) :- deleteEnv(eid), murano:connected(eid, oid), murano:objects(oid, pid, ot)'
openstack congress policy rule create murano_action 'murano:objects-(eid, tnid, ot) :- deleteEnv(eid), murano:objects(eid, tnid, ot)'

relationships
openstack congress policy rule create murano_action 'murano:relationships-(sid, tid, rt) :- deleteEnv(eid), murano:connected(eid, sid), murano:relationships(sid, tid, rt)'
openstack congress policy rule create murano_action 'murano:relationships-(eid, tid, rt) :- deleteEnv(eid), murano:relationships(eid, tid, rt)'

connected
openstack congress policy rule create murano_action 'murano:connected-(tid, tid2) :- deleteEnv(eid), murano:connected(eid, tid), murano:connected(tid,tid2)'
openstack congress policy rule create murano_action 'murano:connected-(eid, tid) :- deleteEnv(eid), murano:connected(eid,tid)'

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Policy Enforcement

Murano Policy Enforcement - Developer Guide

This document describes internals of murano policy enforcement.

Model Decomposition

Models of Murano applications are transformed to set of rules that are processed by congress. This represent data for policy validation.

There are several “tables” created in murano policy for different kind of rules:

	murano:objects(object_id, parent_id, type_name)

	murano:properties(object_id, property_name, property_value)

	murano:relationships(source, target, name)

	murano:connected(source, target)

	murano:parent_types(object_id, parent_type_name)

	murano:states(environment_id, state)

murano:objects(object_id, parent_id, type_name)

This rule is used for representation of all objects in Murano model (environment, applications, instances, ...).
Value of property type is used as type_name parameter:

name: wordpress-env
'?': {type: io.murano.Environment, id: 83bff5ac}
applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}

Transformed to these rules:

	murano:objects+("83bff5ac", "tenant_id", "io.murano.Environment")

	murano:objects+("83bff5ac", "e7a13d3c", "io.murano.databases.MySql")

Note

The owner of the environment is a tenant

murano:properties(object_id, property_name, property_value)

Each object can have properties. In this example we have application with one property:

applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}
database: wordpress

Transformed to this rule:

	murano:properties+("e7a13d3c", "database", "wordpress")

Inner properties are also supported using dot notation:

instance:
'?': {id: 825dc61d, type: io.murano.resources.LinuxMuranoInstance}
networks:
 useFlatNetwork: false

Transformed to this rule:

	murano:properties+("825dc61d", "networks.useFlatNetwork", "False")

If model contains list of values it is represented as set of multiple rules:

instances:
- '?': {id: be3c5155, type: io.murano.resources.LinuxMuranoInstance}
networks:
 customNetworks: [10.0.1.0, 10.0.2.0]

Transformed to these rules:

	murano:properties+("be3c5155", "networks.customNetworks", "10.0.1.0")

	murano:properties+("be3c5155", "networks.customNetworks", "10.0.2.0")

murano:relationships(source, target, name)

Murano app models can contain references to other applications. In this example WordPress application references MySQL in property “database”:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
- '?':
 id: 50fa68ff
 type: io.murano.apps.WordPress
 database: 0aafd67e

Transformed to this rule:

	murano:relationships+("50fa68ff", "0aafd67e", "database")

Note

For property “database” we do not create rule murano:properties+.

Also if we define inner object inside other object, they will have relationship between them:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}

Transformed to this rule:

	murano:relationships+("0aafd67e", "ed8df2b0", "instance")

There are special relationships “services” from the environment to its applications:

	murano:relationships+("env_id", "app_id", "services")

murano:connected(source, target)

This table stores both direct and indirect connections between instances. It is derived from the murano:relationships:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}
- '?':
 id: 50fa68ff
 type: io.murano.apps.WordPress
 database: 0aafd67e

Transformed to rules:

	murano:connected+("50fa68ff", "0aafd67e") # WordPress to MySql

	murano:connected+("50fa68ff", "ed8df2b0") # WordPress to LinuxMuranoInstance

	murano:connected+("0aafd67e", "ed8df2b0") # MySql to LinuxMuranoInstance

murano:parent_types(object_id, parent_name)

Each object in murano has class type and these classes can inherit from one or more parents:

e.g. LinuxMuranoInstance > LinuxInstance > Instance

So this model:

instances:
- '?': {id: be3c5155, type: LinuxMuranoInstance}

Transformed to these rules:

	murano:objects+("...", "be3c5155", "LinuxMuranoInstance")

	murano:parent_types+("be3c5155", "LinuxMuranoInstance")

	murano:parent_types+("be3c5155", "LinuxInstance")

	murano:parent_types+("be3c5155", "Instance")

Note

Type of object is also repeated among parent types (LinuxMuranoInstance in example) for easier handling of user-created rules.

Note

If type inherits from more than one parent and those parents inherit from one common type, parent_type rule is included only once for common type.

murano:states(environment_id, state)

Currently only one record for environment is created:

	murano:states+("uugi324", "pending")

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Composing application package manual

Murano is Application catalog that supports types of applications. This document intends to make composing application packages easily.

Step 1. Prepare Execution Plans

An Execution Plan is a set of metadata that describes the installation process of an application in a virtual machine.
It’s a minimal unit of execution that can be triggered in Murano Workflows and should be understandable by Murano agent. From Execution plans any script can be triggered.
It could be any type of scripts which will execute commands and install application components as the result. Each script may consist of one or more files.
Scripts may be reused across several Execution Plans. One of the scripts should be an entry point and should be specified in a resource template file in Scripts.
Besides the Scripts section the following sections must be presented in a resource template file:

	FormatVersion - version of Execution Plan syntax format

	Version - version of Execution Plan

	Name - human-readable name of the Execution Plan

	Parameters - parameters received from MuranoPL

	Body - Python statement, should start with | symbol

	Scripts - dictionary that maps script names to script definitions.

Scripts are the building blocks of Execution Plans and they may be executed as a whole (like a single piece of code), expose some functions that can be independently called in scripts. This depends on Deployment Platform and Executor capabilities. One script can be defined with the following properties

	Type Deployment Platform name that script is targeted to.

	Version optional minimum version of deployment platform/executor required by the script.

	EntryPoint relative path to the file that contains a script entry point

	Files This is an optional array of additional files required for the script. Use <> to specify a relative path to the file. The root directory is Resource/scripts.

	Options an optional argument of type contains additional options

Example DeployTelnet.template

FormatVersion: 2.0.0
Version: 1.0.0
Name: Deploy Telnet

Parameters:
 appName: $appName

Body: |
 return deploy(args.appName).stdout

Scripts:
 deploy:
 Type: Application
 Version: 1.0.0
 EntryPoint: deployTelnet.sh
 Files:
 - installer.sh
 - common.sh
 Options:
 captureStdout: true
 captureStderr: false

Step 2. Prepare MuranoPL class definitions

MuranoPL classes control application deployment workflow execution. Full information about MuranoPL classes see here: MuranoPL: Murano Programming Language

Example telnet.yaml

Namespaces:
 =: io.murano.apps.linux
 std: io.murano
 res: io.murano.resources

Name: Telnet

Extends: std:Application

Properties:
 name:
 Contract: $.string().notNull()

 instance:
 Contract: $.class(res:Instance).notNull()

Workflow:
 deploy:
 Body:
 - $this.find(std:Environment).reporter.report($this, 'Creating VM for Telnet instace.')
 - $.instance.deploy()
 - $this.find(std:Environment).reporter.report($this, 'Instance is created. Setup Telnet service.')
 - $resources: new('io.murano.system.Resources')
 # Deploy Telnet
 - $template: $resources.yaml('DeployTelnet.template')
 - $.instance.agent.call($template, $resources)
 - $this.find(std:Environment).reporter.report($this, 'Telnet service setup is done.')

Note, that

	io.murano.system.Resources is a system class, defined in MuranoPL. More information about MuranoPL system classes is available here: Murano PL System Class Definitions.

	io.murano.resources.Instance is a class, defined in the core Murano library, which is available here. This library contains Murano Agent templates and virtual machine initialization scripts.

	$this.find(std:Environment).reporter.report($this, ‘Creating VM for Telnet instance.’) - this is the way of sending reports to Murano dashboard during deployment

Step 3. Prepare dynamic UI form definition

Create a form definition in a yaml format. Before configuring a form, compose a list of parameters that will be required to set by a user.
Some form fields that are responsible for choosing a flavor, image and availability zone are better to use in every application creation wizard.
Syntax of Dynamic UI can be found see at the corresponding section: Dynamic UI Definition specification.
Full example with Telnet application form definition Telnet Definition.

Step 4. Prepare application logo

Find or create a simple image (in a .png format) associated with your application. Is should be small and have a square shape. You can specify any name of your image. In our example, let’s name it telnet.png.

Step 5. Prepare manifest file

General application metadata should be described in the application manifest file. It should be in a yaml format and should have the following sections

	Format - version of a manifest syntax format

	Type - package type. Valid choices are Library and Application

	Name - human-readable application name

	Description - a brief description of an application

	Author - person or company name which created an application package

	Classes - MuranoPL class list, on which application deployment is based

	Tags - list of words, associated with this application. Will be helpful during the search. Optional parameter

	Require - list of applications with versions, required by this application. Currently only used by repository importing mechanism. Optional parameter

Example manifest.yaml

Format: 1.0
Type: Application
FullName: io.murano.apps.linux.Telnet
Name: Telnet
Description: |
 Telnet is the traditional protocol for making remote console connections over TCP.
Author: 'Mirantis, Inc'
Tags: [Linux, connection]
Classes:
 io.murano.apps.linux.Telnet: telnet.yaml
UI: telnet.yaml
Logo: telnet.png
Require:
 io.murano.apps.TelnetHelper: 0.0.1

Step 6. Prepare images.lst file

This step is optional. If you plan on providing images required by your
application, you can include images.lst file with image specifications

Example images.lst

Images:
- Name: 'my_image.qcow2'
 Hash: '64d7c1cd2b6f60c92c14662941cb7913'
 Meta:
 title: 'tef'
 type: 'linux'
 DiskFormat: qcow2
 ContainerFormat: bare
- Name: 'my_other_image.qcow2'
 Hash: '64d7c1cd2b6f60c92c14662941cb7913'
 Meta:
 title: 'tef'
 type: 'linux'
 DiskFormat: qcow2
 ContainerFormat: bare
 Url: 'http://path.to/images/file.qcow2'

If Url is omitted - the images would be searched for in the Murano Repository.

Step 7. Compose a zip archive

An application archive should have the following structure

	
	Classes folder

	MuranoPL class definitions should be put inside this folder

	
	Resources folder

	This folder should contain Execution scripts

	
	Scripts folder

	All script files, needed for an application deployment should be placed here

	
	UI folder

	Place dynamic ui yaml definitions here or skip to use the default name ui.yaml

	
	logo.png

	Image file should be placed in the root folder. It can have any name, just specify it in the manifest file or skip to use default logo.png name

	
	manifest.yaml

	Application manifest file. It’s an application entry point. The file name is fixed.

	
	images.lst

	List of required images. Optional file.

Congratulations! Your application is ready to be uploaded to an Application Catalog.

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Uploading HOT templates to the Application Catalog

Murano is an Application catalog which intends to support applications, defined in different formats. As a first step to universality, heat orchestration template support was added.
It means that any heat template could be added as a separate application into the Application Catalog. This could be done in two ways: manual and automatic.

Automatic package composing

Before uploading an application into the catalog, it should be prepared and archived.
Murano command line will do all preparation for you.
Just choose the desired Heat Orchestration Template and perform the following command:

murano package-create --template wordpress/template.yaml

Note, that optional parameters could be specified:

	–name:	Application name, copied from template by default

	–logo:	Application square logo, by default heat logo will be used

	–description:	Text information about an application, by default copied from template

	–author:	Name of application author, by default is set to

	–output:	Name of the output file archive to save locally

	–full-name:	Fully qualified domain name - domain name that specifies exact application location

Note

To performing this command python-muranoclient should be installed in the system

As the result, application definition archive will be ready for an uploading.

Manual package composing

Application package could be composed manually. Follow the 5 steps below.

	Step 1. Choose the desired heat orchestration template

	Step 2. Rename it to template.yaml

	Step 3. Prepare application logo (optional step)

It could be any picture associated with the application.

	Step 4. Create manifest.yaml file

All service information about the application is contained here. Specify the following parameters:

	Format:	Defines application definition format; should be set to Heat.HOT/1.0

	Type:	Defines manifest type, should be set to Application

	FullName:	Unique name which will be used to identify the application in Murano Catalog

	Description:	Text information about an application

	Author:	Name of application author or company

	Tags:	Keywords, associated with the application

	Logo:	Name of the application logo file

Take a look at the example:

Format: Heat.HOT/1.0
Type: Application
FullName: io.murano.apps.linux.Wordpress
Name: Wordpress
Description: |
 WordPress is web software you can use to create a beautiful website or blog.
 This template installs a single-instance WordPress deployment using a local
 MySQL database to store the data.
Author: 'Openstack, Inc'
Tags: [Linux, connection]
Logo: logo.png

	Step 5. Create a zip archive, containing specified files(template.yaml, manifest.yaml, logo.png)

Package uploading

After application package is ready, it can be uploaded to the catalog in two ways:

	Using murano CLI

During uploading, it’s required to provide category, that application belongs to.
To browse all available categories preform:

murano category-list

Specify any suitable category and path to the application archive.

murano package-import --category=Web wordpress.zip

	Using Murano Dashboard

Package uploading is available for admin users at Murano -> Manage -> Packages page.

[image: ../_images/upload.png]
After that, application is available in the Catalog and could be selected for a deployment.

[image: ../_images/app_uploaded.png]

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Building Murano Image

	Windows Image
	Prepare Image Builder Host

	Configure Shared Resource

	Download Prerequisites

	Additional Tools

	Build Windows Image with Murano

	Linux Image

	Upload Image Into Glance
	Murano Image Types

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Building Murano Image

Windows Image

Murano requires a Windows Image in QCOW2 format to be built and uploaded into Glance.

The easiest way to build Windows image for Murano is to build it on the host where your OpenStack is installed.

Prepare Image Builder Host

Install KVM

Note

This guide was tested on Ubuntu Server 12.04 x64.

KVM is a default hypervisor in OpenStack, so our build scripts are targeted to this hypervisor only. It may change in future, though.

Install KVM and some additional packages that are required by our scripts

apt-get install qemu-kvm virtinst virt-manager

Check that your hardware supports hardware virtualization.

$ kvm-ok
INFO: /dev/kvm exists
KVM acceleration can be used

If your output differs, check that harware virtualization is enabled in your BIOS settings. You also could try import KVM kernel module

$ sudo modprobe kvm-intel

or

$ sudo modprobe kvm-amd

It might be helpful to add an appropriate module name into /etc/modules file to auto-load it during system boot. Sometimes it is required on Ubuntu systems.

Configure Shared Resource

Murano Image Builder uses a shared folder located on the host system as an installation source for components.
Makefile from image builder will copy required files to their locations, but you have to manually configure samba share.
To do this, use the steps below.

	Install samba

apt-get install samba

	Create folder that will be shared

mkdir -p /opt/samba/share
chown -R nobody:nogroup /opt/samba/share

	Configure samba server (/etc/samba/smb.conf)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	...
[global]
 ...
 security = share
 ...
[image-builder-share]
 comment = Image Builder Share
 browsable = yes
 path = /opt/image-builder/share
 guest ok = yes
 guest user = nobody
 read only = no
 create mask = 0755
...

	Restart samba services

service smbd restart
service nmbd restart

Download Prerequisites

Windows Server Installation ISO

	Windows Version
	Version String
	Save to

	Windows Server 2008 R2 [1]
	6.1.7601
	/opt/image-builder/share/libvirt/images/ws-2008-eval.iso

	Windows Server 2012 [2]
	6.3.9200
	/opt/image-builder/share/libvirt/images/ws-2012-eval.iso

Warning

Windows Server 2008 R2 must include Service Pack 1 updates. This is required to install PowerShell V3 which is required by Murano Agent.

	[1]	http://www.microsoft.com/en-us/download/details.aspx?id=11093

	[2]	http://technet.microsoft.com/en-US/evalcenter/hh670538.aspx?ocid=&wt.mc_id=TEC_108_1_33

Required Components

	Component
	Save to

	VirtIO drivers for Windows [4]
	/opt/image-builder/share/libvirt/images/virtio-win-0.1-74.iso

	CloudBase-Init for Windows [5]
	/opt/image-builder/share/files/CloudbaseInitSetup_Beta.msi

	.NET 4.0 [6]
	/opt/image-builder/share/files/dotNetFx40_Full_x86_x64.exe

	PowerShell v3 [7]
	/opt/image-builder/share/files/Windows6.1-KB2506143-x64.msu

	Murano Agent [8]
	/opt/image-builder/share/files/MuranoAgent.zip

	Git client [9]
	/opt/image-builder/share/files/Git-1.8.1.2-preview20130601.exe

Warning

PowerShell V3 is a mandatory prerequisite. It is required by Murano Agent. To check your PowerShell version use PowerShell command Get-Host.

Warning

When downloading VirtIO drivers choose only stable versions.
Unstable versions might lead to errors during guest unattended installation.
You can check the latest version avaible here: http://alt.fedoraproject.org/pub/alt/virtio-win/stable

	[3]	http://technet.microsoft.com/en-us/evalcenter/hh670538.aspx

	[4]	http://alt.fedoraproject.org/pub/alt/virtio-win/stable/virtio-win-0.1-74.iso

	[5]	https://www.cloudbase.it/downloads/CloudbaseInitSetup_Beta.msi

	[6]	http://www.microsoft.com/en-us/download/details.aspx?id=17718

	[7]	http://www.microsoft.com/en-us/download/details.aspx?id=34595

	[8]	https://www.dropbox.com/sh/zthldcxnp6r4flm/AADh6LkVkcw2j8nKZevqedHja/MuranoAgent.zip

	[9]	https://msysgit.googlecode.com/files/Git-1.8.3-preview20130601.exe

Optional Components

These components are not mandatory for Murano Agent to function properly.
However, they may help you work with the image after deployment.

	Component
	Save to

	Far Manager [10]
	/opt/image-builder/share/files/Far30b3367.x64.20130717.msi

	Sysinternals Suite [11]
	/opt/image-builder/share/files/SysinternalsSuite.zip

	unzip.exe [12]
	/opt/image-builder/share/files/unzip.exe

	.NET 4.5 [13]
	/opt/image-builder/share/files/dotNetFx45_Full_setup.exe

	[10]	http://www.farmanager.com/files/Far30b3525.x64.20130717.msi

	[11]	http://download.sysinternals.com/files/SysinternalsSuite.zip

	[12]	https://www.dropbox.com/sh/zthldcxnp6r4flm/AACwiyfcrlGDt3ygCFHrbwMra/unzip.exe

	[13]	http://www.microsoft.com/en-us/download/details.aspx?id=30653

Additional Tools

Tools from this section are not necessary to build an image.
However, they may be helpful if you want to create an image with different configuration.

Windows Assessment and Deployment Kit (ADK)

Windows ADK is required if you want to build your own answer files for auto unattended Windows installation.

Download it from http://www.microsoft.com/en-us/download/details.aspx?id=30652

Floppy Image With Unattended File

Floppy image with answer file for unattended installation is needed to automate Windows installation process.

	Create emtpy floppy image in your home folder

$ mkdir ~/flp/files
$ mkdir ~/flp/mnt

$ dd bs=512 count=2880 if=/dev/zero of=~/flp/floppy.img
$ mkfs.msdos ~/flp/floppy.img

	Mount the image

$ mkdir ~/flp/mnt
$ sudo mount -o loop ~/floppy.img ~/flp/mnt

	Download autounattend.xml.template file from https://github.com/openstack/murano-deployment/tree/master/contrib/windows/image-builder/share/files

This folder contains unatteded files for several Windows versions, choose one that matches your Windows version.

	Copy that file to mounted floppy image

$ cp ~/autounattend.xml.template ~/flp/mnt/autounattend.xml

	Replace string %_IMAGE_BUILDER_IP_% in that file with 192.168.122.1

	Unmount the image

$ sudo umount ~/flp/mnt

Build Windows Image with Murano

Build Windows Image Using Image Builder Script

	Clone murano-deployment repository

$ git clone git://git.openstack.org/cgit/openstack/murano-deployment.git

	Change directory to image-builder folder

$ cd murano-deployment/contrib/windows/image-builder

	Create folder structure for image builder

$ sudo make build-root

	Download build prerequisites, and copy them to correct folders

	Windows Server Installation ISO

	Required Components

	Optional Components (Optional)

	Test that all required files are in place

$ sudo make test-build-files

	Get list of available images

$ make

	Run image build process (e.g. to build Windows Server 2012)

$ sudo make ws-2012-std

	Wait until process finishes

	The image file ws-2012-std.qcow2 should be stored inside /opt/image-builder/share/images folder.

Build Windows Image Manualy

Note

Please note that the preferred way to build images is to use Image Builder scripts, see Build Windows Image Using Image Builder Script

Get Post-Install Scripts

There are a few scripts which perform all the required post-installation tasks.

They all are located in http://git.openstack.org/cgit/openstack/murano-deployment/tree/contrib/windows/image-builder/share/scripts

Note

There are subfolders for each supported Windows Version.
Choose one that matches Windows Version you are building.

This folder contains several scripts

	Script Name
	Description

	wpi.ps1
	Handles component installation and system configuration tasks

	Start-Sysprep.ps1
	Prepares system to be syspreped (cleans log files, stops some services and so on), and starts sysprep

	Start-AtFirstBoot.ps1
	Performes basic after-installation tasks

Download these scripts and save them into /opt/image-builder/share/scripts

Create a VM

Now you need a virtual machine instance. There are two possible ways to create it - using CLI or GUI tools. We describe both in this section.

Using CLI Tools

	Preallocate disk image

$ qemu-img create -f raw /var/lib/libvirt/images/ws-2012.img 40G

	Start the VM

virt-install --connect qemu:///system --hvm --name WinServ \
> --ram 2048 --vcpus 2 --cdrom /opt/samba/share/9200.16384.WIN8_RTM\
>.120725-1247_X64FRE_SERVER_EVAL_EN-US-HRM_SSS_X64FREE_EN-US_DV5.ISO \
> --disk path=/opt/samba/share/virtio-win-0.1-52.iso,device=cdrom \
> --disk path=/opt/samba/share/floppy.img,device=floppy \
> --disk path=/var/lib/libvirt/images/ws-2012.qcow2\
>,format=qcow2,bus=virtio,cache=none \
> --network network=default,model=virtio \
> --memballoon model=virtio --vnc --os-type=windows \
> --os-variant=win2k8 --noautoconsole \
> --accelerate --noapic --keymap=en-us --video=cirrus --force

Using virt-manager UI

	Launch virt-manager from shell as root

	Set a name for VM and select Local install media

	Add one cdrom and attach Windows Server ISO image to it

	Select OS type Windows

	Set CPU and RAM amount

	Deselect option Enable storage for this virtual machine

	Add second cdrom for ISO image with virtio drivers

	Add a floppy drive and attach our floppy image to it

	Add (or create new) HDD image with Disk bus VirtIO and storage format RAW

	Set network device model VirtIO

	Start installation process and open guest vm screen through Console button

Install OS

Launch your virtual machine, connect to its virtual console and complete OS installation. At the end of this step you should have Windows Server system that you are able to log into.

Install Prerequisites and Murano

	Create folders where Murano components will be installed

	Path
	Description

	C:\Murano
	Root directory for Murano

	C:\Murano\Agent
	Murano Agent installation directory

	C:\Murano\Modules
	PowerShell modules required by Murano

	C:\Murano\Scripts
	PowerShell scrtips and other files required by Murano

	Open Explorer and navigate to \192.168.122.1share 192.168.122.1 is an IP address of KVM hypervisor assigned by default.

	Copy Murano Agent files into C:MuranoAgent

	Copy CoreFunctions directory (entire directory!) into C:MuranoModules

	Install .NET 4.0

	Register Murano Agent

> cd C:\Murano\Agent
> .\WindowsMuranoAgent.exe /install

	Change PowerShell execution policy to less restricted

Set-ExecutionPolicy RemoteSigned

	Register CoreFunctions modules

Import-Module C:\Murano\Modules\CoreFunctions\CoreFunctions.psm1 -ArgumentList register

	Install CloudInit

	Run Sysprep

C:\Murano\Scripts\Start-Sysprep.ps1 -BatchExecution

	Wait until sysprep phase finishes and system powers off.

Convert the image from RAW to QCOW2 format

The image must be converted from RAW format to QCOW2 before being imported into Glance.

qemu-img convert -O qcow2 /var/lib/libvirt/images/ws-2012.raw \
> /var/lib/libvirt/images/ws-2012-ref.qcow2

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Building Murano Image

Linux Image

At the moment the best way to build a Linux image with Murano agent is
to use disk image builder.

Note

Disk image builder requires sudo rights

The process is quite simple. Let’s assume that you use a directory ~/git
for cloning git repositories:

$ export GITDIR=~/git
$ mkdir -p $GITDIR

Clone the components required to build an image to that directory:

$ cd $GITDIR
$ git clone git://git.openstack.org/cgit/openstack/murano
$ git clone git://git.openstack.org/cgit/openstack/murano-agent
$ git clone git://git.openstack.org/cgit/openstack/diskimage-builder

Checkout a change request that allows to build an image using disk image builder
completely installed to virtual environment:

$ cd $GITDIR/diskimage-builder
$ git fetch https://review.openstack.org/openstack/diskimage-builder refs/changes/02/168002/2 && git checkout FETCH_HEAD

Install additional packages required by disk image builder:

$ sudo apt-get install qemu-utils curl python-tox

Export paths where additional dib elements are located:

$ export ELEMENTS_PATH=$GITDIR/murano/contrib/elements:$GITDIR/murano-agent/contrib/elements

And build Ubuntu-based image with Murano agent:

$ cd $GITDIR/diskimage-builder
$ tox -e venv -- disk-image-create vm ubuntu murano-agent -o ../murano-agent.qcow2

If you need Fedora based image replace ‘ubuntu’ to ‘fedora’ in the last command.

It’ll take a while (up to 30 minutes if your hard drive and internet connection are slow).

When done upload murano-agent.qcow2 image to Glance and play :)

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Building Murano Image

Upload Image Into Glance

To deploy applications with Murano, virtual machine images should be uploaded into Glance in a special way - murano_image_info property should be set.

	Use the glance image-create command to import your disk image to Glance:

$ glance image-create --name <NAME> --is-public true \
> --disk-format qcow2 --container-format bare \
> --file <IMAGE_FILE> --property <IMAGE_METADATA>

Replace the command line arguments to glance image-create with the appropriate values for your environment and disk image:

	Replace <NAME> with the name that users will refer to the disk image by. E.g. ws-2012-std

	Replace <IMAGE_FILE> with the local path to the image file to upload. E.g. ws-2012-std.qcow2.

	Replace <IMAGE_METADATA> with the following property string

murano_image_info='{"title": "Windows 2012 Standart Edition", "type": "windows.2012"}'

where:

	title - user-friendly description of the image

	type - murano image type, see Murano Image Types

	To update metadata of the existing image run the command:

$ glance image-update <IMAGE_ID> --property <IMAGE_MATADATA>

	Replace <IMAGE_ID> with image id from the previous command output.

	Replace <IMAGE_METADATA> with murano_image_info property, e.g.

murano_image_info='{"title": "Windows 2012 Standart Edition", "type": "windows.2012"}'

Warning

The value of the –property argument (named murano_image_info) is a JSON string.
Only double quotes are valid in JSON, so please type the string exactly as in the example above.

Note

Already existing image could be marked in a simple way in Horizon UI with Murano dashboard installed.
Navigate to Murano -> Manage -> Images -> Mark Image and fill up a form:

	Image - ws-2012-std

	Title - My Prepared Image

	Type - Windows Server 2012

After these steps desired image can be chosen in application creation wizard.

Murano Image Types

	Type Name
	Description

	windows.2012
	Windows Server 2012

	linux
	Generic Linux images, Ubuntu / Debian, RedHat / Centos, etc

	cirrus.demo
	Murano demo image, based on CirrOS

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano Automated Tests Description

This page describes automated tests for a Murano project:

	where tests are located

	how they are run

	how execute tests on a local machine

	how to find the the root of problems with FAILed tests

Murano Continuous Integration Service

Murano project has separate CI server, which runs tests for all commits and verifies that new code does not break anything.

Murano CI uses OpenStack QA cloud for testing infrastructure.

Murano CI url: https://murano-ci.mirantis.com/jenkins/ Anyone can login to that server, using launchpad credentials.

There you can find each job for each repository: one for the murano and another one for murano-dashboard.

	“gate-murano-dashboard-selenium*” verifies each commit to murano-dashboard repository

	“gate-murano-integration*” verifies each commit to murano repository

Other jobs allow to build and test Murano documentation and perform another usefull work to support Murano CI infrastructure.
All jobs are run on fresh installation of operation system and all components are installed on each run.

Murano Automated Tests: UI Tests

Murano project has a Web User Interface and all possible user scenarios should be tested.
All UI tests are located at the https://git.openstack.org/cgit/openstack/murano-dashboard/tree/muranodashboard/tests/functional

Automated tests for Murano Web UI are written in Python using special Selenium library. This library is used to automate web browser interaction from Python.
For more information please visit https://selenium-python.readthedocs.org/

Prerequisites:

	Install Python module, called nose performing one of the following commands easy_install nose or pip install nose
This will install the nose libraries, as well as the nosetests script, which you can use to automatically discover and run tests.

	Install external Python libraries, which are required for Murano Web UI tests: testtools and selenium

Download and run tests:

First of all make sure that all additional components are installed.

	Clone murano-dashboard git repository:
	git clone git://git.openstack.org/openstack/murano-dashboard*

	Change default settings:
	Copy muranodashboard/tests/functional/config/config.conf.example to config.conf

	Set appropriate urls and credentials for your OpenStack lab. Only admin users are appropriate.

[murano]

horizon_url = http://localhost/horizon
murano_url = http://localhost:8082
user = ***
password = ***
tenant = ***
keystone_url = http://localhost:5000/v2.0/

All tests are kept in sanity_check.py and divided into 5 test suites:

	TestSuiteSmoke - verification of Murano panels; check, that could be open without errors.

	TestSuiteEnvironment - verification of all operations with environment are finished successfully.

	TestSuiteImage - verification of operations with images.

	TestSuiteFields - verification of custom fields validators.

	TestSuitePackages - verification of operations with Murano packages.

	TestSuiteApplications - verification of Application Catalog page and of application creation process.

To specify which tests/suite to run, pass test/suite names on the command line:

	to run all tests: nosetests sanity_check.p

	to run a single suite: nosetests sanity_check.py:<test suite name>

	to run a single test: nosetests sanity_check.py:<test suite name>.<test name>

In case of SUCCESS execution, you should see something like this:

.........................

Ran 34 tests in 1.440s

OK

In case of FAILURE, folder with screenshots of the last operation of tests that finished with errors would be created.
It’s located in muranodashboard/tests/functional folder.

There are also a number of command line options that can be used to control the test execution and generated outputs. For more details about nosetests, try:

$ nosetests -h

Murano Automated Tests: Tempest Tests

All Murano services have tempest-based automated tests, which allow to verify API interfaces and deployment scenarious.

Tempest tests for Murano are located at the: https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional

The following Python files are contain basic tests suites for different Murano components.

API Tests

Murano API tests are run on devstack gate and located at https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/api

	test_murano_envs.py contains test suite with actions on murano’s environments(create, delete, get and etc.)

	test_murano_sessions.py contains test suite with actions on murano’s sessions(create, delete, get and etc.)

	test_murano_services.py contains test suite with actions on murano’s services(create, delete, get and etc.)

	test_murano_repository.py contains test suite with actions on murano’s package repository

Engine Tests

Murano Engine Tests are run on murano-ci : https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/engine

	base.py contains base test class and tests with actions on deploy Murano services such as ‘Telnet’ and ‘Apache’.

Command Line Tests

Murano CLI tests case are currently in the middle of creation. The current scope is read only operations on a cloud that are hard to test via unit tests.

All tests have description and execution steps in there docstrings.

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano client

Module python-muranoclient comes with CLI murano utility, that interacts with
Murano application catalog

Installation

To install latest murano CLI client run the following command in your shell:

pip install python-muranoclient

Alternatively you can checkout the latest version from
https://git.openstack.org/cgit/openstack/python-muranoclient

Using CLI client

In order to use the CLI, you must provide your OpenStack username, password,
tenant name or id, and auth endpoint. Use the corresponding arguments
(--os-username, --os-password, --os-tenant-name or
--os-tenant-id, --os-auth-url and --murano-url) or
set corresponding environment variables:

export OS_USERNAME=user
export OS_PASSWORD=password
export OS_TENANT_NAME=tenant
export OS_AUTH_URL=http://auth.example.com:5000/v2.0
export MURANO_URL=http://murano.example.com:8082/

Once you’ve configured your authentication parameters, you can run murano
help to see a complete listing of available commands and arguments and
murano help <sub_command> to get help on specific subcommand.

Bash completion

To get the latest bash completion script download murano.bash_completion [https://git.openstack.org/cgit/openstack/python-muranoclient/plain/tools/murano.bash_completion]
from the source repository and add it to your completion scripts.

Listing currently installed packages

To get list of currently installed packages run:

murano package-list

To show details about specific package run:

murano package-show <PKG_ID>

Importing packages in Murano

	package-import subcommand can install packages in several different ways:

	
	from a locall file

	from a http url

	from murano app repository

When creating a package you can specify it’s categories with
-c/--categories and set it’s publicity with --public

To import a local package run:

murano package-import /path/to/package.zip

To import a package from http url run:

murano package-import http://example.com/path/to/package.zip

And finally you can import a package from Murano repository. To do so you have
to specify base url for the repository with --murano-repo-url or with the
corresponding MURANO_REPO_URL environment variable. After doing so,
running:

murano --murano-repo-url="http://example.com/" package-import io.app.foo

would access specified repository and download app io.app.foo from it’s
app directory. This option supports an optional --version parameter, that
would instruct murano client to download package of a specific version.

package-import inspects package requirements specified in the package’s
manifest under Require section and attempts to import them from
Murano Repository.
package-import also inspects any image prerequisites, mentioned in the
images.lst file in the package. If there are any image requirements client
would inspect images already present in the image database. Unless image with
the specific name and hash is present client would attempt to download it.

For more info about specifiying images and requirements for the package see
package creation docs: Composing application package manual.

If any of the packages, being installed is already registerd in Murano, client
would ask you what do do with it. You can specify the default action with
--exists-action, passing s for skip, u for update, and a for abort.

Importing bundles of packages in Murano

	package-import subcommand can install packages in several different ways:

	
	from a locall file

	from a http url

	from murano app repository

When creating a package you can specify it’s categories with
-c/--categories and set it’s publicity with --public

To import a local bundle run:

murano bundle-import /path/to/bundle

To import a bundle from http url run:

murano bundle-import http://example.com/path/to/bundle

To import a bundle from murano repository run:

murano bundle-import bundle_name

Note: When importing from a local file packages would first be searched in a
directory, relative to the directory containing the bundle file itself. This
is done to facilitate installing bundles in an environment with no access to
the repository itself.

Deleting packages from murano

To delete a package run:

murano package-delete <PKG_ID>

Downloading package file

Running:

murano package-download <PKG_ID> > file.zip

would download the zip arhive with specified package

Creating a package

Murano client is able to create application packages from package source
files/directories. To find out more about this command run:

murano help package-create

This command is useful, when application package files are spread across
several directories, and for auto-generating packages from heat templates
For more info about package composition please see package creation docs:
Composing application package manual.

Managing Environments

It is possible to create/update/delete environments with following commands:

murano environment-create <NAME>
murano environment-delete <NAME_OR_ID>
murano environment-list
murano environment-rename <OLD_NAME_OR_ID> <NEW_NAME>
murano environment-show <NAME_OR_ID>

You can get list of deployments for environmet with:

murano deployment-list <NAME_OR_ID>

Managing Categories

It is possible to create/update/delete categories with following commands:

murano category-create <NAME>
murano category-delete <ID> [<ID> ...]
murano category-list
murano category-show <ID>

Managing Environmet Templates

It is possible to manage environment templates with following commands:

murano env-template-create <NAME>
murano env-template-add-app <NAME> <FILE>
murano env-template-del-app <NAME> <FILE>
murano env-template-delete <ID>
murano env-template-list
murano env-template-show <ID>
murano env-template-update <ID> <NEW_NAME>

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano package repository

Murano client and dashboard are both capable of installing packages and
bundles of packages from murano repository. To do so you should set
MURANO_REPO_URL settings in murano dashboard or MURANO_REPO_URL env
variable for the CLI client and use the respective command for package import.
These commands would then automatically import all the prerequisites for the
app being installed along with any images, mentioned in said apps.

For more info about importing from repository see Murano client.

Setting up your own repository

It’s fairly easy to set up your own murano package repository.
To do so you need a web server, that would serve 3 directories:

	/apps/

	/bundles/

	/images/

When importing an app by name client would append any version info, if present
to the app name, .zip file extension and search for that file in the
apps directory.

When importing a bundle by name client would append .bundle file
extension to the bundle name and search it in the bundles directory.
Bundle file is a json or a yaml file with the following structure:

{"Packages":
 [
 {"Name": "io.murano.apps.ApacheHttpServer"},
 {"Version": "", "Name": "io.murano.apps.Nginx"},
 {"Version": "0.0.1", "Name": "io.murano.apps.Lighttpd"}
]
}

Glance images can be auto-imported by client, when mentioned in images.lst
inside the package. Please see Composing application package manual for more info about pakcage
composition.
When importing images from image.lst file client simply searches for a
file with the same name as the Name attribute of the image in the
images directory of the repository.

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Contributing to Murano

If you’re interested in contributing to the Murano project,
the following will help get you started.

Contributor License Agreement

In order to contribute to the Murano project, you need to have
signed OpenStack’s contributor’s agreement:

	http://docs.openstack.org/infra/manual/developers.html

	http://wiki.openstack.org/CLA

Project Hosting Details

	
	Bug tracker

	https://launchpad.net/murano

	
	Mailing list (prefix subjects with [Murano] for faster responses)

	http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev

	
	Wiki

	https://wiki.openstack.org/wiki/Murano

	
	IRC channel

	
	#murano at FreeNode

	https://wiki.openstack.org/wiki/Meetings#Murano_meeting

	
	Code Hosting

	
	https://git.openstack.org/cgit/openstack/murano

	https://git.openstack.org/cgit/openstack/murano-agent

	https://git.openstack.org/cgit/openstack/murano-dashboard

	https://git.openstack.org/cgit/openstack/python-muranoclient

	https://git.openstack.org/cgit/openstack/murano-apps

	
	Code Review

	
	https://review.openstack.org/#/q/murano+AND+status:+open,n,z

	http://docs.openstack.org/infra/manual/developers.html#development-workflow

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Development Guidelines

Coding Guidelines

For all the code in Murano we have a rule - it should pass PEP 8 [http://www.python.org/dev/peps/pep-0008/].

To check your code against PEP 8 run:

$ tox -e pep8

See also

	https://pep8.readthedocs.org/en/latest/

	https://flake8.readthedocs.org

	http://docs.openstack.org/developer/hacking/

Testing Guidelines

Murano has a suite of tests that are run on all submitted code,
and it is recommended that developers execute the tests themselves to
catch regressions early. Developers are also expected to keep the
test suite up-to-date with any submitted code changes.

Unit tests are located at muranoapi/tests.

Murano’s suite of unit tests can be executed in an isolated environment
with Tox [http://tox.testrun.org/]. To execute the unit tests run the following from the root of
Murano repo on Python 2.7:

$ tox -e py27

For Python 2.6:

$ tox -e py26

Documentation Guidelines

Murano dev-docs are written using Sphinx / RST and located in the main repo
in doc directory.

The documentation in docstrings should follow the PEP 257 [http://www.python.org/dev/peps/pep-0257/] conventions
(as mentioned in the PEP 8 [http://www.python.org/dev/peps/pep-0008/] guidelines).

More specifically:

	Triple quotes should be used for all docstrings.

	If the docstring is simple and fits on one line, then just use
one line.

	For docstrings that take multiple lines, there should be a newline
after the opening quotes, and before the closing quotes.

	Sphinx [http://sphinx.pocoo.org/markup/index.html] is used to build documentation, so use the restructured text
markup to designate parameters, return values, etc. Documentation on
the sphinx specific markup can be found here:

Run the following command to build docs locally.

$ tox -e docs

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano TroubleShooting and Debug Tips

During installation and setting environment of new projects you can run into different problems.
This section intends to reduce the time spent on the solution of these problems.

Problems during configuration

Log location

Murano is a multi component project, there several places where logs could be found.

The location of the log file completely depends on the setting in the config file of the corresponding component.
log_file parameter points to the log file, and if it’s omitted or commented logging will be sent to stdout.

Possible problem list

	murano-db-manage failed to execute
	Check connection parameter in provided config file. It should be a connection string [http://docs.sqlalchemy.org/en/rel_0_8/core/engines.html].

	Murano Dashboard is not working
	Make sure, that prepare_murano.sh script was executed and murano file located in enabled folder under openstack_dashboard repository.

	Check, that murano data is not inserted twice in the settings file and as a plugin.

Problems during deployment

Besides identifying errors from log files, there is another and more flexible way to browse deployment errors - directly from UI.
After Deploy Failed status is appeared navigate to environment components and open Deployment History page.
Click on the Show details button located at the corresponding deployment row of the table. Then go to the Logs tab.
You can see steps of the deployments and the one that failed would have red color.

	Deployment freeze after Begin execution: io.murano.system.Agent.call problem with connection between Murano Agent and spawned instance.

	Need to check transport access to the virtual machine (check router has gateway).

	Check for rabbitMq settings: verify that agent has been obtained valid rabbit parameters.
Go to the spawned virtual machine and open /etc/murano/agent.conf or C:MuranoAgentagent.conf on Windows-based machine.
Also, you can examine agent logs, located by default at /var/log/murano-agent.log
The first part of the log file will contain reconnection attempts to the rabbit - since the valid rabbit address and queue have not been obtained yet.

	Check that notification_driver option is set to messagingv2

	Check that linux image name is not starts with ‘w’ letter

	[exceptions.EnvironmentError]: Unexpected stack state NOT_FOUND - problem with heat stack creation, need to examine Heat log file.
If you are running the deployment on new tenant check that router exists and it has gateway to the external network.

	Router could not be created, no external network found - Find external_network parameter in config file and check
that specified external network is really exist via UI or by executiong neutron net-external-list cimmand.

	NoPackageForClassFound: Package for class io.murano.Environment is not found - Check that murano core package is uploaded.
If no, the content of meta/io.murano folder should be zipped and uploaded to Murano.

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Migrating applications from Murano v0.5 to Stable/Juno

Applications created for Murano v0.5, unfortunately, are not suported in Murano
stable/juno. This document provides the application code changes required for
compatibility with the stable/juno Murano version.

Rename ‘Workflow’ to ‘Methods’

In stable/juno the name of section containing class methods is renamed to
Methods, as the latter is more OOP and doesn’t cause confusion with Mistral. So,
you need to change it in app.name/Classes in all classes describing workflow
of your app.

For example:

Workflow:
 deploy:
 Body:
 - $._environment.reporter.report($this, 'Creating VM')

Should be changed to:

Methods:
 deploy:
 Body:
 - $._environment.reporter.report($this, 'Creating VM')

Change the Instance type in the UI definition ‘Application’ section

The Instance class was too generic and contained some dirty workarounds to
differently handle Windows and Linux images, to bootstrap an instance in a
number of ways, etc. To solve these problems more classes were added to the
Instance inheritance hierarchy.

Now, base Instance class is abstract and agnostic of the desired OS and agent
type. It is inherited by two classes: LinuxInstance and WindowsInstance.

	LinuxInstance adds a default security rule for Linux, opening a standard
SSH port;

	WindowsInstance adds a default security rule for Windows, opening an RDP
port. At the same time WindowsInstance prepares a user-data allowing to use
Murano v1 agent.

LinuxInstance is inherited by two other classes, having different software
config method:

	LinuxMuranoInstance adds a user-data preparation to configure Murano
v2 agent;

	LinuxUDInstance adds a custom user-data field allowing the services to
supply their own user data.

You need to specify the instance type which is required by your app. It
specifies a field in UI, where user can select an image matched to the instance
type. This change must be added to UI form definition in app.name/UI/ui.yaml.

For example, if you are going to install your application on Ubuntu, you need to
change:

Application:
 ?:
 instance:
 ?:
 type: io.murano.resources.Instance

to:

Application:
 ?:
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	Murano

Murano API v1 specification

General information

	Introduction

Murano Service API is a programmatic interface used for interaction with
Murano. Other interaction mechanisms like Murano Dashboard or Murano CLI
should use API as underlying protocol for interaction.

	Allowed HTTPs requests

	POST : To create a resource

	GET : Get a resource or list of resources

	DELETE : To delete resource

	PATCH : To update a resource

	Description Of Usual Server Responses

	200 OK - the request was successful.

	201 Created - the request was successful and a resource was created.

	204 No Content - the request was successful but there is no representation to return (i.e. the response is empty).

	400 Bad Request - the request could not be understood or required parameters were missing.

	401 Unauthorized - authentication failed or user didn’t have permissions for requested operation.

	403 Forbidden - access denied.

	404 Not Found - resource was not found

	405 Method Not Allowed - requested method is not supported for resource.

	409 Conflict - requested method resulted in a conflict with the current state of the resource.

	Response of POSTs and PUTs

All POST and PUT requests by convention should return the created object
(in the case of POST, with a generated ID) as if it was requested by
GET.

	Authentication

All requests include a Keystone authentication token header
(X-Auth-Token). Clients must authenticate with Keystone before
interacting with the Murano service.

Glossary

	Environment

Environment is a set of applications managed by a single tenant. They could be related logically with each other or not.
Applications within single Environment may comprise some complex configuration while applications in different Environments are always
independent from one another. Each Environment is associated with single
OpenStack project (tenant).

	Session

Since Murano environment are available for local modification for different users and from different locations, it’s needed to store local modifications somewhere.
So sessions were created to provide this opportunity. After user adds application to the environment - new session is created.
After user sends environment to deploy, session with set of applications changes status to deploying and all other open sessions for that environment becomes invalid.
One session could be deployed only once.

	Object Model

Applications are defined in MuranoPL object model, which is defined as JSON object.
Murano API doesn’t know anything about it.

	Package

A .zip archive, containing instructions for an application deployment.

	
	Environment-Template

	The Environment template is the specification of a set of applications managed by a single tenant, which are
related each other. The environment template is stored in a environment template catalogue, and it can be
managed by the user (creation, deletion, updating...). Finally, it can be deployed on Openstack by translating
into an environment.

Environment API

	Attribute
	Type
	Description

	id
	string
	Unique ID

	name
	string
	User-friendly name

	created
	datetime
	Creation date and time in ISO format

	updated
	datetime
	Modification date and time in ISO format

	tenant_id
	string
	OpenStack tenant ID

	version
	int
	Current version

	networking
	string
	Network settings

	status
	string
	Deployment status: ready, pending,
deploying

Common response codes

	Code
	Description

	200
	Operation completed successfully

	401
	User is not authorized to perform the operation

List Environments

Request

	Method
	URI
	Description

	GET
	/environments
	Get a list of existing
Environments

Response

This call returns list of environments. Only the basic properties are
returned.

{
 "environments": [
 {
 "status": "ready",
 "updated": "2014-05-14T13:02:54",
 "networking": {},
 "name": "test1",
 "created": "2014-05-14T13:02:46",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "2fa5ab704749444bbeafe7991b412c33"
 },
 {
 "status": "ready",
 "updated": "2014-05-14T13:02:55",
 "networking": {},
 "name": "test2",
 "created": "2014-05-14T13:02:51",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "744e44812da84e858946f5d817de4f72"
 }
]
}

Create Environment

	Attribute
	Type
	Description

	name
	string
	Environment name; only alphanumeric characters and ‘-‘

Request

	Method
	URI
	Description

	POST
	/environments
	Create new Environment

	Content-Type
application/json

	
	Example

	{“name”: “env_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
 "version": 0
}

Update Environment

	Attribute
	Type
	Description

	name
	string
	Environment name; only alphanumeric characters and ‘-‘

Request

	Method
	URI
	Description

	PUT
	/environments/<env_id>
	Update an existing Environment

	Content-Type
application/json

	Example
{“name”: “env_name_changed”}

Response

	Content-Type

	application/json

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_name_changed",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:45:54Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
 "version": 0
}

Get Environment Details

Request

Return information about environment itself and about applications, including to this environment.

	Method
	URI
	Header
	Description

	GET
	/environments/{id}
	X-Configuration-Session (optional)
	Response detailed information
about Environment including
child entities

Response

	Content-Type

	application/json

{
 "status": "ready",
 "updated": "2014-05-14T13:12:26",
 "networking": {},
 "name": "quick-env-2",
 "created": "2014-05-14T13:09:55",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 1,
 "services": [
 {
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "name": "exgchhv6nbika2",
 "ipAddresses": [
 "10.0.0.200"
],
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "14cce9d9-aaa1-4f09-84a9-c4bb859edaff"
 }
 },
 "name": "rewt4w56",
 "?": {
 "status": "ready",
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "446373ef-03b5-4925-b095-6c56568fa518"
 }
 }
],
 "id": "20d4a012628e4073b48490a336a8acbf"
}

Delete Environment

Request

	Method
	URI
	Description

	DELETE
	/environments/{id}
	Remove specified Environment.

Environment Configuration API

Multiple sessions could be opened for one environment simultaneously, but only one session going
to be deployed. First session that starts deploying is going to be deployed; other ones become invalid and could not be deployed at all.
User could not open new session for environment that in
deploying state (that’s why we call it “almost lock free” model).

	Attribute
	Type
	Description

	id
	string
	Session unique ID

	environment_id
	string
	Environment that going to be modified
during this session

	created
	datetime
	Creation date and time in ISO format

	updated
	datetime
	Modification date and time in ISO format

	user_id
	string
	Session owner ID

	version
	int
	Environment version for which
configuration session is opened

	state
	string
	Session state. Could be: open, deploying,
deployed

Configure Environment / Open session

During this call new working session is created, and session ID should be sent in a request header with name X-Configuration-Session.

Request

	Method
	URI
	Description

	POST
	/environments/<env_id>/configure
	Creating new configuration
session

Response

	Content-Type

	application/json

{
 "updated": datetime.datetime(2014, 5, 14, 14, 17, 58, 949358),
 "environment_id": "744e44812da84e858946f5d817de4f72",
 "ser_id": "4e91d06270c54290b9dbdf859356d3b3",
 "created": datetime.datetime(2014, 5, 14, 14, 17, 58, 949305),
 "state": "open", "version": 0L, "id": "257bef44a9d848daa5b2563779714820"
 }

	Code
	Description

	200
	Session created successfully

	401
	User is not authorized to access this session

	403
	Could not open session for environment, environment has
deploying status

Deploy Session

With this request all local changes made within environment start to deploy on Openstack.

Request

	Method
	URI
	Description

	POST
	/environments/<env_id>/sessions/
<session_id>/deploy
	
	Deploy changes made in session

	with specified session_id

Response

	Code
	Description

	200
	Session status changes to deploying

	401
	User is not authorized to access this session

	403
	Session is already deployed or deployment is in progress

Get Session Details

Request

	Method
	URI
	Description

	GET
	/environments/<env_id>/sessions/
<session_id>
	Get details about session
with specified session_id

Response

{
 "id": "4aecdc2178b9430cbbb8db44fb7ac384",
 "environment_id": "4dc8a2e8986fa8fa5bf24dc8a2e8986fa8",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:54Z",
 "user_id": "d7b501094caf4daab08469663a9e1a2b",
 "version": 0,
 "state": "deploying"
}

	Code
	Description

	200
	Session details information received

	401
	User is not authorized to access this session

	403
	Session is invalid

Delete Session

Request

	Method
	URI
	Description

	DELETE
	/environments/<env_id>/sessions/
<session_id>
	Delete session with specified
session_id

Response

	Code
	Description

	200
	Session is deleted successfully

	401
	User is not authorized to access this session

	403
	Session is in deploying state and could not be deleted

Environment Deployments API

Environment deployment API allows to track changes of environment status, deployment events and errors.
It also allows to browse deployment history.

List Deployments

Returns information about all deployments of the specified environment.

Request

	Method
	URI
	Description

	GET
	/environments/<env_id>/deployments
	Get list of environment deployments

Response

	Content-Type

	application/json

{
 "deployments": [
 {
 "updated": "2014-05-15T07:24:21",
 "environment_id": "744e44812da84e858946f5d817de4f72",
 "description": {
 "services": [
 {
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "ef729199-c71e-4a4c-a314-0340e279add8"
 },
 "name": "xkaduhv7qeg4m7"
 },
 "name": "teslnet1",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "6e437be2-b5bc-4263-8814-6fd57d6ddbd5"
 }
 }
],
 "defaultNetworks": {
 "environment": {
 "name": "test2-network",
 "?": {
 "type": "io.murano.lib.networks.neutron.NewNetwork",
 "id": "b6a1d515434047d5b4678a803646d556"
 }
 },
 "flat": null
 },
 "name": "test2",
 "?": {
 "type": "io.murano.Environment",
 "id": "744e44812da84e858946f5d817de4f72"
 }
 },
 "created": "2014-05-15T07:24:21",
 "started": "2014-05-15T07:24:21",
 "finished": null,
 "state": "running",
 "id": "327c81e0e34a4c93ad9b9052ef42b752"
 }
]
}

	Code
	Description

	200
	Deployments information received successfully

	401
	User is not authorized to access this environment

Application Management API

All applications should be created within an environment and all environment modifications are held within the session.
Local changes apply only after successful deployment of an environment session.

Get Application Details

Using GET requests to applications endpoint user works with list containing all
applications for specified environment. User can request whole list,
specific application, or specific attribute of specific application using tree
traversing. To request specific application, user should add to endpoint part
an application id, e.g.: /environments/<env_id>/services/<application_id>. For
selection of specific attribute on application, simply appending part with
attribute name will work. For example to request application name, user
should use next endpoint: /environments/<env_id>/services/<application_id>/name

Request

	Method
	URI
	Header

	GET
	/environments/<env_id>/services<app_id>
	X-Configuration-Session (optional)

Parameters:

	env_id - environment ID, required

	app_id - application ID, optional

Response

	Content-Type

	application/json

{
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "060715ff-7908-4982-904b-3b2077ff55ef"
 },
 "name": "hbhmyhv6qihln3"
 },
 "name": "dfg34",
 "?": {
 "status": "pending",
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "6e7b8ad5-888d-4c5a-a498-076d092a7eff"
 }
}

POST applications

New application can be added to the Murano environment using session.
Result JSON is calculated in Murano dashboard, which based on UI definition

Request

	Content-Type

	application/json

	Method
	URI
	Header

	POST
	/environments/<env_id>/services
	X-Configuration-Session

{
 "instance": {
 "flavor": "m1.medium",
 "image": "clod-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"
 },
 "name": "nhekhv6r7mhd4"
 },
 "name": "sdf34sadf",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "190c8705-5784-4782-83d7-0ab55a1449aa"
 }
}

Response

Created application returned

	Content-Type

	application/json

{
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"
 },
 "name": "nhekhv6r7mhd4"
 },
 "name": "sdf34sadf",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "190c8705-5784-4782-83d7-0ab55a1449a1"
 }
}

Delete application from environment

Delete one or all applications from the environment

Request

	Method
	URI
	Header

	DELETE
	/environments/<env_id>/services/<app_id>
	X-Configuration-Session(optional)

Parameters:

	env_id - environment ID, required

	app_id - application ID, optional

Statistic API

Statistic API intends to provide billing feature

Instance Environment Statistics

Request

Get information about all deployed instances in the specified environment

	Method
	URI

	GET
	/environments/<env_id>/instance-statistics/raw/<instance_id>

Parameters:

	env_id - environment ID, required

	instance_id - ID of the instance for which need to provide statistic information, optional

Response

	Attribute
	Type
	Description

	type
	int
	Code of the statistic object; 200 - instance, 100 - application

	type_name
	string
	Class name of the statistic object

	instance_id
	string
	Id of deployed instance

	active
	bool
	Instance status

	type_title
	string
	User-friendly name for browsing statistic in UI

	duration
	int
	Seconds of instance uptime

	Content-Type

	application/json

[
 {
 "type": 200,
 "type_name": "io.murano.resources.Instance",
 "instance_id": "ef729199-c71e-4a4c-a314-0340e279add8",
 "active": true,
 "type_title": null,
 "duration": 1053,
 }
]

Request

	Method
	URI

	GET
	/environments/<env_id>/instance-statistics/aggregated

Response

	Attribute
	Type
	Description

	type
	int
	Code of the statistic object; 200 - instance, 100 - application

	duration
	int
	Amount uptime of specified type objects

	count
	int
	Quantity of specified type objects

	Content-Type

	
application/json

[
 {
 "duration": 720,
 "count": 2,
 "type": 200
 }
]

General Request Statistics

Request

	Method
	URI

	GET
	/stats

Response

	Attribute
	Type
	Description

	requests_per_tenant
	int
	Number of incoming requests for user tenant

	errors_per_second
	int
	Class name of the statistic object

	errors_count
	int
	Class name of the statistic object

	requests_per_second
	float
	Average number of incoming request received in one second

	requests_count
	int
	Number of all requests sent to the server

	cpu_percent
	bool
	Current cpu usage

	cpu_count
	int
	Available cpu power is cpu_count * 100%

	host
	string
	Server host-name

	average_response_time
	float
	Average time response waiting, seconds

	Content-Type

	application/json

[
 {
 "updated": "2014-05-15T08:26:17",
 "requests_per_tenant": "{\"726ed856965f43cc8e565bc991fa76c3\": 313}",
 "created": "2014-04-29T13:23:59",
 "cpu_count": 2,
 "errors_per_second": 0,
 "requests_per_second": 0.0266528,
 "cpu_percent": 21.7,
 "host": "fervent-VirtualBox",
 "error_count": 0,
 "request_count": 320,
 "id": 1,
 "average_response_time": 0.55942
 }
]

Application Catalog API

Manage application definitions in the Application Catalog.
You can browse, edit and upload new application packages (.zip.package archive with all data that required for a service deployment).

Packages

Methods for application package management

Package Properties

	id: guid of a package (fully_qualified_name can also be used for some API functions)

	fully_qualified_name: fully qualified domain name - domain name that specifies exact application location

	name: user-friendly name

	type: package type, “library” or “application”

	description: text information about application

	author: name of application author

	tags: list of short names, connected with the package, which allows to search applications easily

	categories: list of application categories

	class_definition: list of class names used by a package

	is_public: determines whether the package is shared for other tenants

	enabled: determines whether the package is browsed in the Application Catalog

	owner_id: id of a tenant that owns the package

List packages

/v1/catalog/packages?{marker}{limit}{order_by}{type}{category}{fqn}{owned}{catalog}{class_name} [GET]

This is the compound request to list and search through application catalog.
If there are no search parameters all packages that is_public, enabled and belong to the user’s tenant will be listed.
Default order is by ‘created’ field.
For an admin role all packages are available.

Parameters

	Attribute
	Type
	Description

	catalog
	bool
	If false (default) - search packages, that current user can edit (own for non-admin, all for admin)
If true - search packages, that current user can deploy (i.e. his own + public)

	marker
	string
	A package identifier marker may be specified. When present only packages which occur after the identifier ID will be listed

	limit
	string
	When present the maximum number of results returned will not exceed the specified value.
The typical pattern of limit and marker is to make an initial limited request and then to use the ID of the last package from
the response as the marker parameter in a subsequent limited request.

	order_by
	string
	Allows to sort packages by: fqn, name, created. Created is default value.

	type
	string
	Allows to point a type of package: application, library

	category
	string
	Allows to point a categories for a search

	fqn
	string
	Allows to point a fully qualified package name for a search

	owned
	bool
	Search only from packages owned by current tenant

	include_disabled
	bool
	Include disabled packages in a the result

	search
	string
	Gives opportunity to search specified data by all the package parameters

	class_name
	string
	Search only for packages, that use specified class

Response 200 (application/json)

{"packages": [
 {
 "id": "fed57567c9fa42c192dcbe0566f8ea33",
 "fully_qualified_name" : "com.example.murano.services.linux.telnet",
 "is_public": false,
 "name": "Telnet",
 "type": "linux",
 "description": "Installs Telnet service",
 "author": "Openstack, Inc.",
 "created": "2014-04-02T14:31:55",
 "enabled": true,
 "tags": ["linux", "telnet"],
 "categories": ["Utility"],
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
 },
 {
 "id": "fed57567c9fa42c192dcbe0566f8ea31",
 "fully_qualified_name": "com.example.murano.services.windows.WebServer",
 "is_public": true,
 "name": "Internet Information Services",
 "type": "windows",
 "description": "The Internet Information Service sets up an IIS server and joins it into an existing domain",
 "author": "Openstack, Inc.",
 "created": "2014-04-02T14:31:55",
 "enabled": true,
 "tags": ["windows", "web"],
 "categories": ["Web"],
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
 }]
 }

Upload a new package[POST]

/v1/catalog/packages

See the example of multipart/form-data request, It should contain two parts - text (json string) and file object

Request (multipart/form-data)

Content-type: multipart/form-data, boundary=AaB03x
Content-Length: $requestlen

--AaB03x
content-disposition: form-data; name="submit-name"

--AaB03x
Content-Disposition: form-data; name="JsonString"
Content-Type: application/json

{"categories":["web"] , "tags": ["windows"], "is_public": false, "enabled": false}
`categories` - array, required
`tags` - array, optional
`name` - string, optional
`description` - string, optional
`is_public` - bool, optional
`enabled` - bool, optional

--AaB03x
content-disposition: file; name="file"; filename="test.tar"
Content-Type: targz
Content-Transfer-Encoding: binary

$binarydata
--AaB03x--

Response 200 (application/json)

{
 "updated": "2014-04-03T13:00:13",
 "description": "A domain service hosted in Windows environment by using Active Directory Role",
 "tags": ["windows"],
 "is_public": true,
 "id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
 "categories": ["test1"],
 "name": "Active Directory",
 "author": "Mirantis, Inc",
 "created": "2014-04-03T13:00:13",
 "enabled": true,
 "class_definition": [
 "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "com.mirantis.murano.windows.activeDirectory.SecondaryController",
 "com.mirantis.murano.windows.activeDirectory.Controller",
 "com.mirantis.murano.windows.activeDirectory.PrimaryController"
],
 "fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "type": "Application",
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
}

Get package details

/v1/catalog/packages/{id} [GET]

Display details for a package.

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/json)

{
 "updated": "2014-04-03T13:00:13",
 "description": "A domain service hosted in Windows environment by using Active Directory Role",
 "tags": ["windows"],
 "is_public": true,
 "id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
 "categories": ["test1"],
 "name": "Active Directory",
 "author": "Mirantis, Inc",
 "created": "2014-04-03T13:00:13",
 "enabled": true,
 "class_definition": [
 "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "com.mirantis.murano.windows.activeDirectory.SecondaryController",
 "com.mirantis.murano.windows.activeDirectory.Controller",
 "com.mirantis.murano.windows.activeDirectory.PrimaryController"
],
 "fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "type": "Application",
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
}

Response 403

	In attempt to get non-public package by user whose tenant is not an owner of this package.

Response 404

	In case specified package id doesn’t exist.

Update a Package

/v1/catalog/packages/{id} [PATCH]

Allows to edit mutable fields (categories, tags, name, description, is_public, enabled).
See the full specification here [http://tools.ietf.org/html/rfc6902].

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Content type

application/murano-packages-json-patch

Allowed operations:

[
 { "op": "add", "path": "/tags", "value": ["foo", "bar"] },
 { "op": "add", "path": "/categories", "value": ["foo", "bar"] },
 { "op": "remove", "path": "/tags", ["foo"] },
 { "op": "remove", "path": "/categories", ["foo"] },
 { "op": "replace", "path": "/tags", "value": [] },
 { "op": "replace", "path": "/categories", "value": ["bar"] },
 { "op": "replace", "path": "/is_public", "value": true },
 { "op": "replace", "path": "/enabled", "value": true },
 { "op": "replace", "path": "/description", "value":"New description" },
 { "op": "replace", "path": "/name", "value": "New name" }
]

Request 200 (application/murano-packages-json-patch)

[
 { "op": "add", "path": "/tags", "value": ["windows", "directory"] },
 { "op": "add", "path": "/categories", "value": ["Directory"] }
]

Response 200 (application/json)

{
 "updated": "2014-04-03T13:00:13",
 "description": "A domain service hosted in Windows environment by using Active Directory Role",
 "tags": ["windows", "directory"],
 "is_public": true,
 "id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
 "categories": ["test1"],
 "name": "Active Directory",
 "author": "Mirantis, Inc",
 "created": "2014-04-03T13:00:13",
 "enabled": true,
 "class_definition": [
 "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "com.mirantis.murano.windows.activeDirectory.SecondaryController",
 "com.mirantis.murano.windows.activeDirectory.Controller",
 "com.mirantis.murano.windows.activeDirectory.PrimaryController"
],
 "fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "type": "Application",
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
}

Response 403

	An attempt to update immutable fields

	An attempt to perform operation that is not allowed on the specified path

	An attempt to update non-public package by user whose tenant is not an owner of this package

Response 404

	An attempt to update package that doesn’t exist

Delete application definition from the catalog

/v1/catalog/packages/{id} [DELETE]

Parameters

	id (required) Hexadecimal id (or fully qualified name) of the package to delete

Response 404

	An attempt to delete package that doesn’t exist

Get application package

/v1/catalog/packages/{id}/download [GET]

Get application definition package

Parameters

	id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octetstream)

The sequence of bytes representing package content

Response 404

Specified package id doesn’t exist

Get UI definition

/v1/catalog/packages/{id}/ui [GET]

Retrieve UI definition for a application which described in a package with provided id

Parameters

	id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing UI definition

Response 404

Specified package id doesn’t exist

Response 403

Specified package is not public and not owned by user tenant, performing the request

Response 404

	Specified package id doesn’t exist

Get logo

Retrieve application logo which described in a package with provided id

/v1/catalog/packages/{id}/logo [GET]

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing application logo

Response 403

Specified package is not public and not owned by user tenant,
performing the request

Response 404

Specified package is not public and not owned by user tenant,
performing the request

Categories

Provides category management. Categories are used in the Application Catalog
to group application for easy browsing and search.

List categories

	/v1/catalog/packages/categories [GET]

!DEPRECATED (Plan to remove in L release) Retrieve list of all available application categories

Response 200 (application/json)

A list, containing category names

	Content-Type

	application/json

{
 "categories": ["Web service", "Directory", "Database", "Storage"]
}

	/v1/catalog/categories [GET]

	Method
	URI
	Description

	GET
	/catalog/categories
	Get list of existing categories

Retrieve list of all available application categories

Response 200 (application/json)

A list, containing detailed information about each category

	Content-Type

	application/json

{"categories": [
 {
 "id": "0420045dce7445fabae7e5e61fff9e2f",
 "updated": "2014-12-26T13:57:04",
 "name": "Web",
 "created": "2014-12-26T13:57:04",
 "package_count": 1
 },
 {
 "id": "3dd486b1e26f40ac8f35416b63f52042",
 "updated": "2014-12-26T13:57:04",
 "name": "Databases",
 "created": "2014-12-26T13:57:04",
 "package_count": 0
 }]
}

Get category details

/catalog/categories/<category_id> [GET]

Return detailed information for a provided category

Request

	Method
	URI
	Description

	GET
	/catalog/categories/<category_id>
	Get category detail

Parameters

	category_id - required, category ID, required

Response

	Content-Type

	application/json

{
 "id": "b308f7fa8a2f4a5eb419970c827f4466",
 "updated": "2015-01-28T17:00:19",
 "packages": [
 {
 "fully_qualified_name": "io.murano.apps.ZabbixServer",
 "id": "4dfb566e69e6445fbd4aea5099fe95e9",
 "name": "Zabbix Server"
 }
],
 "name": "Web",
 "created": "2015-01-28T17:00:19",
 "package_count": 1
}

	Code
	Description

	200
	OK. Category deleted successfully

	401
	User is not authorized to access this session

	404
	Not found. Specified category doesn`t exist

Add new category

/catalog/categories [POST]

Add new category to the Application Catalog

Parameters

	Attribute
	Type
	Description

	name
	string
	Environment name; only alphanumeric characters and ‘-‘

Request

	Method
	URI
	Description

	POST
	/catalog/categories
	Create new category

	Content-Type

	application/json

	Example

	{“name”: “category_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "category_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "package_count": 0
}

	Code
	Description

	200
	OK. Category created successfully

	401
	User is not authorized to access this session

	409
	Conflict. Category with specified name already exist

Delete category

/catalog/categories [DELETE]

Request

	Method
	URI
	Description

	DELETE
	/catalog/categories/<category_id>
	Delete category with specified id

Parameters:

	category_id - required, category ID, required

Response

	Code
	Description

	200
	OK. Category deleted successfully

	401
	User is not authorized to access this session

	404
	Not found. Specified category doesn`t exist

	403
	Forbidden. Category with specified name is assigned to
the package, presented in the catalog

Environment Template API

Manage environment template definitions in Murano. It is possible to create, update, delete and deploy into Openstack by translating
it into an environment. In addition, applications can be added or delete to the environment template.

Environment Template Properties

	Attribute
	Type
	Description

	id
	string
	Unique ID

	name
	string
	User-friendly name

	created
	datetime
	Creation date and time in ISO format

	updated
	datetime
	Modification date and time in ISO format

	tenant_id
	string
	OpenStack tenant ID

	version
	int
	Current version

	networking
	string
	Network settings

	description
	string
	The environment template specification

Common response codes

	Code
	Description

	200
	Operation completed successfully

	401
	User is not authorized to perform the operation

Methods for Environment Template API

List Environments Templates

Request

	Method
	URI
	Description

	GET
	/templates
	Get a list of existing
environment templates

Response

This call returns list of environment templates. Only the basic properties are
returned.

{
 "templates": [
 {
 "updated": "2014-05-14T13:02:54",
 "networking": {},
 "name": "test1",
 "created": "2014-05-14T13:02:46",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "2fa5ab704749444bbeafe7991b412c33"
 },
 {
 "updated": "2014-05-14T13:02:55",
 "networking": {},
 "name": "test2",
 "created": "2014-05-14T13:02:51",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "744e44812da84e858946f5d817de4f72"
 }
]
}

Create Environment Template

Request

	Method
	URI
	Description

	POST
	/templates
	Create a new environment template

	Content-Type

	application/json

	Example

	{“name”: “env_temp_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_temp_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
}

Error code

	Code
	Description

	200
	Operation completed successfully

	401
	User is not authorized to perform the operation

	409
	The environment template already exists

Get Environment Templates Details

Request

Return information about environment template itself and about applications, including to this
environment template.

	Method
	URI
	Description

	GET
	/templates/{env-temp-id}
	Obtains the enviroment template information

	env-temp-id - environment template ID, required

Response

	Content-Type

	application/json

 {
 "updated": "2015-01-26T09:12:51",
 "networking":
 {
 },
 "name": "template_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "id": "aa9033ca7ce245fca10e38e1c8c4bbf7",
}

Error code

	Code
	Description

	200
	OK. Environment Template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exit

Delete Environment Template

Request

	Method
	URI
	Description

	DELETE
	/templates/<env-temp-id>
	Delete the template id

Parameters:

	env-temp_id - environment template ID, required

Error code

	Code
	Description

	200
	OK. Environment Template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exit

Adding application to environment template

Request

	Method
	URI
	Description

	POST
	/templates/{env-temp-id}/services
	Create a new application

Parameters:

	env-temp-id - The environment-template id, required

	payload - the service description

	Content-Type

	application/json

Example

{
 "instance": {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "port": "8080",
 "?": {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
}

Response

{
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
}

Error code

	Code
	Description

	200
	OK. Environment Template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exit

Get applications information from an environment template

Request

	Method
	URI | Description

	GET
	/templates/{env-temp-id}/services | It obtains the service description

Parameters:

	env-temp-id - The environment template ID, required

	Content-Type

	application/json

Response

[
 {
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "tomcat",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
 },
 {
 "instance": "ef984a74-29a4-45c0-b1dc-2ab9f075732e",
 "password": "XXX",
 "name": "mysql",
 "?":
 {
 "type": "io.murano.apps.database.MySQL",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
 }
]

Error code

	Code
	Description

	200
	OK. Environment Template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exit

Create an environment from an environment template

Request

	Method
	URI | Description

	POST
	/templates/{env-temp-id}/create-environment| Create an environment

Parameters:

	env-temp-id - The environment template ID, required

Payload:

	‘environment name’: The environment name to be created.

	Content-Type

	application/json

Example

{
 "name": "environment_name"
}

Response

{
 "environment_id": "aa90fadfafca10e38e1c8c4bbf7",
 "name": "environment_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "session_id": "adf4dadfaa9033ca7ce245fca10e38e1c8c4bbf7",
}

Error code

	Code
	Description

	200
	OK. Environment template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exit

	409
	The environment already exists

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	Murano

Index

 Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

 _static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Murano »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

_images/4_1.png
Create Router

Router Name *

[murano-detaut routeq

Cancel

_images/deployment-log.png
88 openstack & demo ~

Froieet * Deployment information
Admin o
Identity . environments > environment quick-env-2 > deployment at 2015-01-20 04:24:13
Murano o
coniguration [JIS

Application Catalog o

coomens DEPIOYmMenNt Logs

Rrecaloe 3 - Action deploy is scheduled

:24:15 - Motel validation failed:
Manage © ftcenisastywbi: instance Tlavor has RAM size over Z043MB
2015-61-20 04324115 - Deployment finished with errors

_images/4_2.png
Add Interface

‘Subnet *

Select Subnet

IP Address (optional) @

E| Description:
You can connect a speciied subnet o the router.
“The efaut P adress of the iterface created s a

19216021

| gatoway o the selctad sutt. vou can specty anctrer
1P adress of the inteface here. You must select a subnet

Router Name *

murano-default-router

Router ID *
'37025290-163e-4fba-aabb-ceBIS65(dd14.

1o which the specified IP address belongs to from the.
above list.

_images/new-instance.png
Add Application to “quick-env-3"

Instance favor
‘ [mimedium , j Git Application

‘Specify some instance parameters on which the
Instance image ‘application would be created

Select Image +| stance navor: soictregtera n Openstack iavor
Consider that appication performance depends on this

Key Pair parameter.
Instance image: Select valid image for the application.

Image should have Murano agent installed and
registered in Glance.

No keypair

Availability zone
Key Pair: Select the Key Pair to control access to
instances. You can login to instances using this
KeyPalr aiter application deployment

nova

Avallability zone: Select availability zone where the
‘application would be installed.

- £

_images/1.png
B openstack
Pt
compute

Network

Networ Topioay

Orchestration

Admin

Network Topology

Setrea

_images/app_uploaded.png
B openstack hate ~ | [(Regonons sonen
Project » Application details

Admin Wordpress ©Addto Env +f Quick Deploy
Murano v

Overview = Requirements License
Application Catalog v

Heat WordPress template to support F18, using only Heat OpenStack-native resource types, and without the
requirement for heat-cftools in the image. WordPress is web software you can use to create a beautiful website or

Environments
blog. This template installs a single-instance WordPress deployment using a local MySQL database to store the data.
Applications
Statistics " . -
Fully Qualified Application Name: io.murano.apps.generated.Wordpress
Author: kate
Manage) Active: True
Public: True

Type: Application
Tags: Heat-generated
Categories: heatimported

_images/5.png
B openstack [2
Project - Network Topology

D " [Wsmat | 5 noma
Network -

[o ety

Orchestration ,
Admin ,

_images/upload.png
B openstack

Project

Admin

Images

Package Definitions

»

Application Catalog

Manage

Kate

~ | | Regionone

Package Definitions

Package Definitions

=}

a

a

Package Name

Telnet Renamed

Apache HTTP Server

Core library

Neutron Networking library

Apache Tomcat

Library

Author

Mirantis, Inc

Mirants, Inc

Mirants, Inc

Mirantis, Inc

kaef~| Signout

- bataiai]

Actions

"Modity Package
Modity Package
"Modity Package
Modity Package

Modity Package

Delete Packages

More ™

More ™

_images/2.png
Create Network

Sunets SubnetDetal

orktame From here you can create a new network.

[Local | in agdtion a subnet associated with the network can be
created in the next panel.

Admin State
@

specification/murano-env-temp.html

 Navigation

 		
 index

 		Murano »

Environment Template API

Manage environment template definitions in Murano. It is possible to create, update, delete and deploy into Openstack by translating
it into an environment. In addition, applications can be added or delete to the environment template.

Environment Template Properties

		Attribute
		Type
		Description

		id
		string
		Unique ID

		name
		string
		User-friendly name

		created
		datetime
		Creation date and time in ISO format

		updated
		datetime
		Modification date and time in ISO format

		tenant_id
		string
		OpenStack tenant ID

		version
		int
		Current version

		networking
		string
		Network settings

		description
		string
		The environment template specification

Common response codes

		Code
		Description

		200
		Operation completed successfully

		401
		User is not authorized to perform the operation

Methods for Environment Template API

List Environments Templates

Request

		Method
		URI
		Description

		GET
		/templates
		Get a list of existing
environment templates

Response

This call returns list of environment templates. Only the basic properties are
returned.

{
 "templates": [
 {
 "updated": "2014-05-14T13:02:54",
 "networking": {},
 "name": "test1",
 "created": "2014-05-14T13:02:46",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "2fa5ab704749444bbeafe7991b412c33"
 },
 {
 "updated": "2014-05-14T13:02:55",
 "networking": {},
 "name": "test2",
 "created": "2014-05-14T13:02:51",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "744e44812da84e858946f5d817de4f72"
 }
]
}

Create Environment Template

Request

		Method
		URI
		Description

		POST
		/templates
		Create a new environment template

		Content-Type

		application/json

		Example

		{“name”: “env_temp_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_temp_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
}

Error code

		Code
		Description

		200
		Operation completed successfully

		401
		User is not authorized to perform the operation

		409
		The environment template already exists

Get Environment Templates Details

Request

Return information about environment template itself and about applications, including to this
environment template.

		Method
		URI
		Description

		GET
		/templates/{env-temp-id}
		Obtains the enviroment template information

		env-temp-id - environment template ID, required

Response

		Content-Type

		application/json

 {
 "updated": "2015-01-26T09:12:51",
 "networking":
 {
 },
 "name": "template_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "id": "aa9033ca7ce245fca10e38e1c8c4bbf7",
}

Error code

		Code
		Description

		200
		OK. Environment Template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exit

Delete Environment Template

Request

		Method
		URI
		Description

		DELETE
		/templates/<env-temp-id>
		Delete the template id

Parameters:

		env-temp_id - environment template ID, required

Error code

		Code
		Description

		200
		OK. Environment Template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exit

Adding application to environment template

Request

		Method
		URI
		Description

		POST
		/templates/{env-temp-id}/services
		Create a new application

Parameters:

		env-temp-id - The environment-template id, required

		payload - the service description

		Content-Type

		application/json

Example

{
 "instance": {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "port": "8080",
 "?": {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
}

Response

{
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
}

Error code

		Code
		Description

		200
		OK. Environment Template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exit

Get applications information from an environment template

Request

		Method
		URI | Description

		GET
		/templates/{env-temp-id}/services | It obtains the service description

Parameters:

		env-temp-id - The environment template ID, required

		Content-Type

		application/json

Response

[
 {
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "tomcat",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
 },
 {
 "instance": "ef984a74-29a4-45c0-b1dc-2ab9f075732e",
 "password": "XXX",
 "name": "mysql",
 "?":
 {
 "type": "io.murano.apps.database.MySQL",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
 }
]

Error code

		Code
		Description

		200
		OK. Environment Template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exit

Create an environment from an environment template

Request

		Method
		URI | Description

		POST
		/templates/{env-temp-id}/create-environment| Create an environment

Parameters:

		env-temp-id - The environment template ID, required

Payload:

		‘environment name’: The environment name to be created.

		Content-Type

		application/json

Example

{
 "name": "environment_name"
}

Response

{
 "environment_id": "aa90fadfafca10e38e1c8c4bbf7",
 "name": "environment_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "session_id": "adf4dadfaa9033ca7ce245fca10e38e1c8c4bbf7",
}

Error code

		Code
		Description

		200
		OK. Environment template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exit

		409
		The environment already exists

 © Copyright .
 Last updated on Tue Feb 23 00:37:55 2016, commit cafdcb9.
 Created using Sphinx 1.2.3.

_images/3.png
Create Network

Network Address:
1921682024

1P Version

i

Gatoway 1P
w2821

Disable Gatonay

«Back

Subnet Detal

You can create a subnet associlod W he new neuwor,
i which case “Network Address” must be speciied. I
You wsh 0 create a network WITHOUT a subnet,
incheck the “Creste Subnet checkbax,

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/ajax-loader.gif

_static/up.png

